×

Likelihood analysis of a first-order autoregressive model with exponential innovations. (English) Zbl 1050.62096

The model under consideration is a first-order linear AR model \(x_t=\rho x_{t-1}+\varepsilon_t\), \(t=1,\dots,T\), where \(\{\varepsilon_t\}\) is a sequence of independent, exponentially distributed random variables with common positive scale parameter \(\lambda>0\). The distribution theory for inference on the autoregressive parameter \(\rho\) is given and the exact distribution of the maximum likelihood estimator \(\widehat{\rho}=\min_{1\leq t \leq T}(x_t/x_{t-1})\) of the autoregressive parameter is derived. Asymptotic properties of \(\widehat{\rho}\) are investigated. Particularly, it is proved that if \(\rho<1\), then the estimator \(\widehat{\rho}\) is asymptotically exponential and \(T\)-consistent; when \(\rho=1\), the asymptotic distribution is again exponential but \(T^2\)-consistent, while in the explosive case the estimator is \(\rho^T\)-consistent. In all cases the likelihood ratio test statistics for the simple hypothesis \(\rho=\rho_0\) are asymptotically uniformly distributed.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62E15 Exact distribution theory in statistics
62F12 Asymptotic properties of parametric estimators
62F05 Asymptotic properties of parametric tests
62E20 Asymptotic distribution theory in statistics

References:

[1] An H.-Z., J. Time Ser. Anal. 14 pp 179– (1993)
[2] Andel J., Commun. Statist. Theory. Meth. 17 pp 1481– (1988)
[3] J. Time Ser. Anal. 10 pp 1– (1989)
[4] DOI: 10.1111/1467-9868.00282 · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[5] Bell C. B., Commun. Statist. Theory. Meth. 15 pp 2267– (1986)
[6] L. Breiman (1968 ) . Reading, Massachusetts: Addision-Wesley.
[7] Brown B. M., Ann. Math. Stat. 42 pp 59– (1971)
[8] DOI: 10.1016/0304-4149(89)90090-2 · Zbl 0692.62070 · doi:10.1016/0304-4149(89)90090-2
[9] Lai T. L., J. Multivariate Anal. 13 pp 1– (1983)
[10] Lawrance A. J., J. R. Statist. Soc. B 47 pp 165– (1985)
[11] Matthai A. M., Ann. Inst. Statist. Math. 34 pp 591– (1982)
[12] Phillips P. C. B., Ann. Statist. 20 pp 971– (1992)
[13] Raftery A. E., Publ. Inst. Statist. Univ. Paris 25 pp 65– (1980)
[14] Anderson O.D., Time Series Analysis: Theory and Practice 1 (1982)
[15] G. Roberts, O. Papaspiliopoulous, and P. Dellaportas (2001 ) Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes . Submitted paper, Department of Mathematics and Statistics, Lancaster University.
[16] DOI: 10.1016/0167-7152(92)90126-P · Zbl 0770.60053 · doi:10.1016/0167-7152(92)90126-P
[17] White J. S., Ann. Math. Statist. 29 pp 1188– (1958)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.