×

Yang-Mills theory and conjugate connections. (English) Zbl 1040.53033

Let \(E\) be a vector bundle with a bundle metric \(h\) over a Riemannian manifold \((M,g)\). The authors define the notion of a Yang-Mills connection \(D\) in the bundle \(E\) in the standard way (as a critical point of the Yang-Mills functional), dropping the standard assumption that the connection \(D\) preserves the metric \(h\). In some cases, they express the corresponding Yang-Mills equation in terms of the connection \(D^*\), which is metrically conjugate to the connection \(D\). For example, let \((D,g)\) be a Weyl structure on a 4-manifold \(M\) that is a Riemannian metric \(g\) and a torsion-free linear connection \(D\) which preserves the conformal structure \([g]\). Then \(D\) is a minimum of the Yang-Mills functional if and only if the curvatures \(R^D\) and \(R^{D^*}\) of the connections \(D, D^*\) satisfy the following generalization of the self-duality equation: \[ \ast R^D = R^{D^*}. \] As another application, they prove the following theorem: Let \(f: M \rightarrow \mathbb R^{n+1}\) be a non-degenerate affine immersion of an \(n\)-manifold, \(D\) the induced connection on \(M\), \(h\) the affine second fundamental form and \(S\) the affine shape operator. Then \(D\) is a Yang-Mills connection on the manifold \((M,h)\) if and only if the dual connection \(D^*\) satisfies the equation \[ D^*_X(SY) = S(D_XY) \] for any vector fields \(X,Y\) on \(M\). In particular, if \(f(M)\) is an affine hypersphere (i.e. \(S = c \text{ Id}\) for a nonzero constant \(c\)), then \(D\) is a Yang-Mills connection if and only if \(f(M)\) is a quadratic affine hypersurface.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
53A15 Affine differential geometry
Full Text: DOI

References:

[1] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London, 362, 425-461 (1978) · Zbl 0389.53011
[2] Besse, A. L., Einstein Manifolds (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0613.53001
[3] Bourguignon, J. P., Metrics with harmonic curvature, (Willmore, T. J.; Hitchin, N. J., Global Riemannian Geometry (1984)), 18-26 · Zbl 0622.53026
[4] Bourguignon, J. P.; Lawson, H. B., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys., 79, 189-230 (1981) · Zbl 0475.53060
[5] Chen, B. Y., Geometry of submanifolds (1973), Marcel Dekker: Marcel Dekker New York · Zbl 0262.53036
[6] Derdzinski, A., Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z., 172, 273-280 (1980) · Zbl 0453.53037
[7] Derdzinski, A., On compact Riemannian manifolds with harmonic curvature, Math. Ann., 259, 245-252 (1982)
[8] Derdzinski, A.; Shen, C. L., Codazzi tensor fields, curvature and Pontrjagin forms, Proc. London Math. Soc., 47, 15-26 (1983) · Zbl 0519.53015
[9] Dillen, F.; Nomizu, K.; Vranken, L., Conjugate connections and Radon’s theorem in affine differential geometry, Monatshefts für Mathematik, 109, 221-235 (1990) · Zbl 0712.53008
[10] Ki, U. H.; Nakagawa, H., Submanifolds with harmonic curvature, Tsukuba J. Math., 10, 285-292 (1986) · Zbl 0616.53042
[11] Ki, U. H.; Nakagawa, H.; Umehara, M., On complete hypersurfaces with harmonic curvature in a Riemannian manifold of constant curvature, Tsukuba J. Math., 11, 61-76 (1987) · Zbl 0631.53044
[12] Nomizu, K.; Sasaki, T., Affine Differential Geometry—Geometry of Affine Immersions (1994), Cambridge University Press · Zbl 0834.53002
[13] Omachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J., 9, 170-174 (1986) · Zbl 0602.53016
[14] Pedersen, H.; Poon, Y. S.; Swan, A., Einstein-Weyl deformations and submanifolds, Internat. J. Math., 7, 705-719 (1996) · Zbl 0867.53042
[15] Simon, U., Zur Relativgeometrie: symmetrische Zusammenhänge auf Hyperflächen, Math. Z., 106, 35-46 (1968) · Zbl 0164.52002
[16] Umehara, M., Hypersurfaces with harmonic curvature, Tsukuba Math. J., 10, 70-88 (1986) · Zbl 0602.53017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.