×

Non-Gaussian invariant measures for the Majda model of decaying turbulent transport. (English) Zbl 1036.76025

The author considers the evolution of a scalar passively advected by a turbulent velocity field. The mechanism underlying intermittency in passive scalar advection is explained. Majda’s model, developed in the paper [A. J. Majda, Phys. Fluids A 5, No. 8, 1963–1970 (1993; Zbl 0781.76047)], is investigated. Generalizations of Majda’s model are presented for relaxed assumption that the velocity field is white-in-time. It is shown that the results obtained by the author for Majda’s model are valid for all velocity fields with finite correlation time, while for velocity fields with infinite correlation time the intermittent corrections in the statistics of the scalar become more important as the persistence effects in the velocity fields increase.

MSC:

76F25 Turbulent transport, mixing
76F55 Statistical turbulence modeling
60H30 Applications of stochastic analysis (to PDEs, etc.)

Citations:

Zbl 0781.76047
Full Text: DOI

References:

[1] Balkovsky, Phys Rev E 58 pp 5776– (1998) · doi:10.1103/PhysRevE.58.5776
[2] Bernard, J Stat Phys 90 pp 519– (1998) · Zbl 0932.76030 · doi:10.1023/A:1023212600779
[3] Bronski, Phys Fluids 9 pp 181– (1997) · Zbl 1185.76678 · doi:10.1063/1.869161
[4] Bronski, J Stat Phys 98 pp 897– (2000) · Zbl 1063.76046 · doi:10.1023/A:1018639928526
[5] Bronski, Phys Lett A 265 pp 257– (2000) · Zbl 0966.76036 · doi:10.1016/S0375-9601(99)00907-X
[6] Castaing, J Fluid Mech 204 pp 1– (1989) · doi:10.1017/S0022112089001643
[7] Chertkov, Phys Rev E 51 pp 5609– (1995) · doi:10.1103/PhysRevE.51.5609
[8] Ching, Phys Rev A 44 pp 3622– (1991) · doi:10.1103/PhysRevA.44.3622
[9] Vanden Eijnden, Proc Natl Acad Sci USA 97 pp 8200– (2000) · Zbl 0967.76038 · doi:10.1073/pnas.97.15.8200
[10] Gaw??dzki, Phys Rev Lett 75 pp 3834– (1995) · doi:10.1103/PhysRevLett.75.3834
[11] Gaw??dzki, Physica D 138 pp 63– (2000) · Zbl 0967.76041 · doi:10.1016/S0167-2789(99)00171-2
[12] Kailasnath, Phys Rev Lett 68 pp 2766– (1992) · doi:10.1103/PhysRevLett.68.2766
[13] Kraichnan, Phys Fluids 11 pp 945– (1968) · Zbl 0164.28904 · doi:10.1063/1.1692063
[14] Kraichnan, Phys Rev Lett 52 pp 1016– (1994) · doi:10.1103/PhysRevLett.72.1016
[15] ; Integration of Brownian vector fields. math.PR/9909147 (1999).
[16] Li, J Theor Prob 12 pp 699– (1999) · Zbl 0932.60039 · doi:10.1023/A:1021675731663
[17] Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht, 1995. · doi:10.1007/978-94-015-8474-6
[18] McLaughlin, Phys Fluids 8 pp 536– (1996) · Zbl 1023.76560 · doi:10.1063/1.868806
[19] Majda, Phys Fluids A 5 pp 1963– (1993) · Zbl 0781.76047 · doi:10.1063/1.858823
[20] Majda, J Stat Phys 73 pp 515– (1993) · Zbl 1102.82328 · doi:10.1007/BF01054338
[21] Majda, Physics Reports 314 pp 237– (1999) · doi:10.1016/S0370-1573(98)00083-0
[22] Sinai, Phys Rev Lett 63 pp 1962– (1989) · doi:10.1103/PhysRevLett.63.1962
[23] Shraiman, Phys Rev E 49 pp 2912– (1994) · doi:10.1103/PhysRevE.49.2912
[24] Thoroddsen, J Fluid Mech 244 pp 547– (1992) · doi:10.1017/S0022112092003185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.