×

Uniqueness results for the generators of the two-dimensional Euler and Navier-Stokes flows. (English) Zbl 1034.35086

The Euler and Navier-Stokes equations for an incompressible fluid in two dimensions with periodic boundary conditions are considered. Concerning the Euler equations, the associated (first order) Liouville operator \(L\) is considered as a symmetric linear operator in a Hilbert space \(L^2(\mu)\) with respect to a natural invariant Gaussian measure \(\mu\). For the Navier-Stokes equations with a suitable white noise forcing term the associated (second order) Kolmogorov operator \(K\) is considered. It is proved that both \(L\) and \(K\) are bounded by naturally positive Schrödinger-like operators. Some other uniqueness results for \(L\) and \(K\) are presented.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
35B10 Periodic solutions to PDEs
47D06 One-parameter semigroups and linear evolution equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Albeverio, S.; Bogachev, V.; Röckner, M., On uniqueness of invariant measures for finite- and infinite-dimensional diffusions, Comm. Pure Appl. Math., 52, 325-362 (1999) · Zbl 0998.60064
[2] Albeverio, S.; Cruzeiro, A. B., Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two dimensional fluids, Comm. Math. Phys., 129, 431-444 (1990) · Zbl 0702.76041
[3] S. Albeverio, and, B. Ferrario, 2D vortex motion of an incompressible ideal fluid: The Koopman-von Neumann approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top, to appear.; S. Albeverio, and, B. Ferrario, 2D vortex motion of an incompressible ideal fluid: The Koopman-von Neumann approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top, to appear. · Zbl 1047.76009
[4] S. Albeverio, B. Ferrario, and, M. Yoshida, Essential self-adjointness of Wick powers of fixed time relativistic fields and related operators, in preparation.; S. Albeverio, B. Ferrario, and, M. Yoshida, Essential self-adjointness of Wick powers of fixed time relativistic fields and related operators, in preparation. · Zbl 1059.60046
[5] Albeverio, S.; Høegh-Krohn, R., Stochastic methods in quantum fields theory and hydrodynamics, Phys. Rep., 77, 193-214 (1981)
[6] Albeverio, S.; Høegh-Krohn, R., Stochastic flows with stationary distribution for two-dimensional inviscid fluids, Stochastic Proc. Appl., 31, 1-31 (1989) · Zbl 0676.76033
[7] Albeverio, S.; Høegh-Krohn, R.; Merlini, D., Euler flows, associated generalized random fields and Coulomb systems, (Albeverio, S., Infinite Dimensional Analysis and Stochastic Processes (Bielefeld, 1983), 24 (1985), Pitman: Pitman London), 216-244 · Zbl 0607.76017
[8] Albeverio, S.; Kondratiev, Yu. G.; Röckner, M., An approximate criterium for essential self-adjointness of Dirichlet operators, Pot. An., 1, 307-317 (1992) · Zbl 0808.47021
[9] Albeverio, S.; Kondratiev, Yu. G.; Röckner, M., Dirichlet operators via stochastic analysis, J. Funct. Anal., 128, 102-138 (1995) · Zbl 0820.60042
[10] Albeverio, S.; Ribeiro De Faria, M.; Høegh-Krohn, R., Stationary measure for the periodic Euler flow in two dimensions, J. Statist. Phys., 20, 585-595 (1979)
[11] Albeverio, S.; Röckner, M., Dirichlet form methods for uniqueness of martingale problems and applications, Stochastic Analysis, Proceedings of the Symposium on Pure Mathematics (1995), AMS: AMS Providence, p. 513-528 · Zbl 0824.31005
[12] Boldrighini, C.; Frigio, S., Equilibrium states for a plane incompressible perfect fluid, Comm. Math. Phys., 72, 55-76 (1980) · Zbl 0453.76019
[13] Capiński, M.; Cutland, N. J., Nonstandard Methods for Stochastic Fluid Mechanics (1995), World Scientific: World Scientific Singapore · Zbl 0824.76003
[14] Caprino, S.; De Gregorio, S., On the statistical solutions of the two-dimensional periodic Euler equation, Math. Meth. Appl. Sci., 7, 55-73 (1985) · Zbl 0578.76020
[15] Cipriano, F., The two dimensional Euler equation: a statistical study, Comm. Math. Phys., 201, 139-154 (1999) · Zbl 0946.35064
[16] Cruzerio, A. B., Solutions et mesures invariantes pour des équations d’évolution stochastiques du type Navier-Stokes, Exposition. Math., 7, 73-82 (1989) · Zbl 0665.60066
[17] Da Prato, G.; Tubaro, L., Self-adjointness of some infinite-dimensional elliptic operators and applications to stochastic quantization, Probab. Theory Related Fields, 118, 131-145 (2000) · Zbl 0971.47019
[18] Da Prato, G.; Zabeczyk, J., Ergodicity for Infinite-dimensional Systems (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0849.60052
[19] Eberle, A., Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators (1999), Springer: Springer Berlin · Zbl 0957.60002
[20] Ebin, D. G., A concise presentation of the Euler equations of hydrodynamics, Comm. Partial Differential Equations, 9, 539-559 (1984) · Zbl 0548.76005
[21] Ferrario, B., Ergodic results for stochastic Navier-Stokes equation, Stochastics Stochastics Rep., 60, 271-288 (1997) · Zbl 0882.60059
[22] Ferrario, B., Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure, Ann. Mat. Pura Appl., CLXXVII, 331-347 (1999) · Zbl 0955.60065
[23] Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1, 403-423 (1994) · Zbl 0820.35108
[24] Flandoli, F.; Gozzi, F., Kolmogorov equation associated to a stochastic Navier-Stokes equation, J. Funct. Anal., 160, 312-336 (1998) · Zbl 0928.60044
[25] Flandoli, F.; Maslowski, B., Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys., 172, 119-141 (1995) · Zbl 0845.35080
[26] Glimm, J.; Jaffe, A., Quantum Physics. A Functional Integral Point of View (1981), Springer: Springer Berlin · Zbl 0461.46051
[27] Hida, T., Brownian Motion (1980), Springer: Springer Berlin · Zbl 0432.60002
[28] Itô, K., Complex multiple Wiener integral, Jpn. J. Math., 22, 63-86 (1952) · Zbl 0049.08602
[29] Kato, T., Perturbation Theory for Linear Operators (1966), Springer: Springer Berlin · Zbl 0148.12601
[30] Liskevich, V.; Röckner, M., Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola. Norm. Sup. Pisa Cl. Sci., 27, 69-91 (1998) · Zbl 0953.60056
[31] Marchioro, C.; Pellegrinotti, A.; Pulvirenti, M., Self-adjointness of the Liouville operator for infinite classical systems, Comm. Math. Phys., 58, 13-129 (1978) · Zbl 0373.47024
[32] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer: Springer New York · Zbl 0516.47023
[33] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness (1972), Academic Press: Academic Press New York · Zbl 0242.46001
[34] Stannat, W., (Nonsymmetric) Dirichlet operators in \(L^1\): Existence, uniqueness and associated Markov processes, Ann. Scuola. Norm. Super. Pisa. Cl. Sci., 28, 99-140 (1999) · Zbl 0946.31003
[35] Stroock, D. W.; Varadhan, S. R.S., Multidimensional Diffusion Process (1979), Springer: Springer Berlin · Zbl 0426.60069
[36] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam · Zbl 0568.35002
[37] Zambotti, L., An analytic approach to existence and uniqueness for martingale problems in infinite dimensions, Probab. Theory Related Fields, 118, 147-168 (2000) · Zbl 0963.60059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.