×

A class of harmonic submersions and minimal submanifolds. (English) Zbl 0978.58006

The authors introduce the notion of a pseudo-horizontally homothetic map. This denotes a smooth map \(\varphi\) from a Riemannian manifold \(M\) to a Kähler manifold \(N\) such that \(d\varphi \circ d\varphi^\ast\) commutes with the Kähler structure \(J\) and such that \[ d\varphi(\nabla_V d\varphi^\ast(JY)) = J d\varphi(\nabla_Vd\varphi^\ast(Y)) \] holds for all vector fields \(Y\) locally defined on \(N\) and all horizontal tangent vectors \(V\) on \(M\). This class includes holomorphic and antiholomorphic maps between Kähler manifolds.
The main result of the paper says that if \(\varphi\) is a pseudo-horizontally homothetic harmonic submersion and if \(P \subset N\) is a complex submanifold, then \(\varphi^{-1}(P)\) is a minimal submanifold of \(M\). This can for example be used to find minimal submanifolds of \(\mathbb{CP}^n\) which are not complex submanifolds.

MSC:

58E20 Harmonic maps, etc.
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
Full Text: DOI

References:

[1] DOI: 10.1007/s002290050198 · Zbl 0938.53035 · doi:10.1007/s002290050198
[2] DOI: 10.1007/BFb0096222 · doi:10.1007/BFb0096222
[3] DOI: 10.1007/BF01934344 · Zbl 0757.53031 · doi:10.1007/BF01934344
[4] Brnznescu V., Springer-Verlag pp 1624– (1996)
[5] Burns D., J. Diff. Geom. 30 pp 579– (1989) · Zbl 0678.53062 · doi:10.4310/jdg/1214443603
[6] DOI: 10.1142/S0129167X97000299 · Zbl 0904.53044 · doi:10.1142/S0129167X97000299
[7] DOI: 10.1112/blms/10.1.1 · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[8] DOI: 10.1112/blms/20.5.385 · Zbl 0669.58009 · doi:10.1112/blms/20.5.385
[9] DOI: 10.5802/aif.691 · Zbl 0339.53026 · doi:10.5802/aif.691
[10] DOI: 10.1007/BF02568184 · Zbl 0826.53029 · doi:10.1007/BF02568184
[11] DOI: 10.1007/BF01264019 · Zbl 0826.53028 · doi:10.1007/BF01264019
[12] Gudmundsson S., Math. Scand. 73 pp 127– (1993) · Zbl 0790.58009 · doi:10.7146/math.scand.a-12460
[13] Hsiang W. Y., J. Diff. Geom. 5 pp 1– (1971) · Zbl 0219.53045 · doi:10.4310/jdg/1214429775
[14] DOI: 10.1142/S0129167X97000457 · Zbl 0910.58010 · doi:10.1142/S0129167X97000457
[15] DOI: 10.1090/conm/049/833811 · doi:10.1090/conm/049/833811
[16] DOI: 10.1142/S0129167X92000187 · Zbl 0763.53051 · doi:10.1142/S0129167X92000187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.