×

On the cohomology of the finite Chevalley groups. (English) Zbl 0959.20017

Let \(G\) be a finite group and \(V\) a faithful irreducible \(G\)-module in characteristic \(p>0\). There is no loss of generality in assuming that \(V\) is absolutely irreducible. One of the basic problems in representation theory is to understand \(H^1(G,V)\). In particular, what is the dimension of \(H^1(G,V)\)? It has been shown that this question can be reduced to the case that \(G\) is a nonabelian simple group [see M. Aschbacher and L. Scott, J. Algebra 92, 44-80 (1985; Zbl 0549.20011) or M. Aschbacher and R. Guralnick, J. Algebra 90, 446-460 (1984; Zbl 0554.20017)].
The reviewer conjectured in 1984 that there was an absolute bound on \(\dim H^1(G,V)\). Aschbacher and the reviewer proved that \(\dim H^1(G,V)<\dim V\) [loc. cit.]. The reviewer improved this to \(\dim H^1(G,V)\leq(2/3)\dim V\) and the author and the reviewer improved the result to \(\dim H^1(G,V)\leq(1/2)\dim V\) [in Groups and geometries, Siena 1996, Trends in Mathematics 81-89 (1998; Zbl 0894.20039)]. The reviewed article was a key step in proving that result – better bounds are obtained for Chevalley groups (much better in the case of cross characteristic modules).
The main technique in the proof is to produce two subgroups \(S\) and \(T\) of \(G\) such that \(G=\langle S,T\rangle\), \(\dim H^1(S,V)\) and \(\dim H^1(T,V)\) are controlled and \(S\cap T\) is big and well understood in terms of the action on \(V\). This is particularly useful in the case of cross characteristic representations. This technique was used by J. L. Alperin and D. Gorenstein [Proc. Am. Math. Soc. 32, 87-88 (1972; Zbl 0249.18026)] to give a criterion for the vanishing of \(H^1\) under suitable hypotheses.
Different ideas are needed for modules in the natural representation and the bounds obtained are not as good. The factor of \(1/2\) is best possible in characteristics \(2\) and \(3\) (but only when \(\dim V=2\) in characteristic \(2\) and \(\dim V=4\) in characteristic \(3\)). The question still remains as to whether \(\dim H^1(G,V)\leq\ell\) for some absolute constant \(\ell\).
Chris McDowell and Leonard Scott in unpublished work have shown that for \(p\) sufficiently large, there exist modules \(V\) for \(G=\text{SL}(6,p)\) with \(\dim H^1(G,V)=3\). There are also examples of \(4\)-dimensional \(\text{Ext}^1(V,W)\) with \(V\) and \(W\) absolutely irreducible. Their methods involve explicit calculations of Kazhdan-Lusztig polynomials and use the facts that the Lusztig conjecture holds for \(p\) sufficiently large and that finite group cohomology and algebraic group cohomology are related. This brings into doubt the reviewer’s conjecture about an absolute bound on \(\dim H^1(G,V)\).

MSC:

20C33 Representations of finite groups of Lie type
20J06 Cohomology of groups
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
20G10 Cohomology theory for linear algebraic groups

References:

[1] Andersen, H. H.; Jorgensen, J.; Landrock, P., The projective indecomposable modules of SL(2\(p^n\)), Proc. London Math. Soc. (2), 46, 38-52 (1983) · Zbl 0503.20013
[2] Aschbacher, M.; Guralnick, R., Some applications of the first cohomology group, J. Algebra, 90, 446-460 (1984) · Zbl 0554.20017
[3] Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra, 92, 44-80 (1985) · Zbl 0549.20011
[4] Azad, H.; Barry, M.; Seitz, G., On the structure of the parabolic subgroups, Comm. Algebra, 18, 551-562 (1990) · Zbl 0717.20029
[5] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., An ATLAS of Finite Groups (1985), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0568.20001
[7] Carter, R., Simple Groups of Lie Type (1989), Wiley-Interscience: Wiley-Interscience New York · Zbl 0723.20006
[8] Carter, R., Finite Groups of Lie Type, Conjugacy Classes and Complex Characters (1972), Wiley-Interscience: Wiley-Interscience New York
[9] Curtis, C. W.; Reiner, I., Representation theory of finite groups and associative algebras. Representation theory of finite groups and associative algebras, Pure Appl. Math., 11 (1966), Wiley-Interscience: Wiley-Interscience New York
[10] Curtis, C. W.; Reiner, I., Methods of Representation Theory (1994), Wiley-Interscience: Wiley-Interscience New York
[11] Dieudonné, J., La géométrie des groupes classiques. La géométrie des groupes classiques, Ergeb. Math. Grenzgeb., 5 (1955), Springer-Verlag, p. 115 · Zbl 0067.26104
[12] Fong, P.; Seitz, G., Groups with a (B,N)-Pair of Rank 2. II, Invent. Math., 24, 191-239 (1974) · Zbl 0295.20049
[13] Gorenstein, D.; Lyons, R., The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc., 276, 731 (1983) · Zbl 0519.20014
[14] Guralnick, R., Generation of simple groups, J. Algebra, 103, 381-401 (1986) · Zbl 0601.20013
[16] Guralnick, R.; Kimmerle, W., On the cohomology of the alternating and symmetric groups and decomposition of relation module, J. Pure Appl. Algebra, 69, 135-140 (1990) · Zbl 0756.20008
[17] Hiss, G., The modular characters of the Tits simple group and its automorphism group, Comm. Algebra, 14, 125-154 (1986) · Zbl 0577.20008
[18] Huppert, B., Endliche Gruppen I (1967), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0217.07201
[19] Huppert, B.; Blackburn, N., Finite Groups II (1982), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0477.20001
[20] Jones, W.; Parshall, B., On the 1-cohomology of finite groups of Lie type, Proceedings of the Conference on Finite Groups, University of Utah, Park City, UT, 1975 (1976), Academic Press: Academic Press New York, p. 313-328 · Zbl 0345.20046
[21] Kleidman, P.; Liebeck, M., The Subgroup Structure of the Finite Classical Groups (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0697.20004
[22] Kleshchev, A. S., Cohomology of finite Chevalley groups with coefficients in modules with 1-dimensional weight spaces, Comm. Algebra, 22, 1197-2218 (1994) · Zbl 0801.20027
[23] Landazuri, V.; Seitz, G., On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra, 32, 418-443 (1974) · Zbl 0325.20008
[24] Landrock, P.; Michler, G. O., Principal 2-blocks of the simple groups of Ree type, Trans. Amer. Math. Soc., 260, 83-111 (1980) · Zbl 0438.20007
[25] Liebeck, M. W., The affine permutation groups of rank three, Proc. London Math. Soc. (3), 54, 477-516 (1987) · Zbl 0621.20001
[26] Liebeck, M.; Saxl, J., On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc. (3), 55, 299-330 (1987) · Zbl 0627.20026
[27] Liebeck, M.; Saxl, J.; Testerman, D., Simple subgroups of large rank in groups of Lie type, Proc. London Math. Soc. (3), 72, 425-457 (1996) · Zbl 0855.20040
[28] Malle, G., The maximal subgroups of \(^2F_4(q^2)\), J. Algebra, 139, 52-69 (1991) · Zbl 0725.20014
[29] Seitz, G., Some representations of classical groups, J. London Math. Soc. (2), 10, 115-120 (1975) · Zbl 0333.20039
[30] Seitz, G., Bounds for dimensions of weight spaces of maximal tori, Contemp. Math., 153, 157-161 (1993) · Zbl 0820.20020
[31] Seitz, G., The root subgroups for maximal tori in finite groups of Lie type, Pacific J. Math., 106, 153-244 (1983) · Zbl 0522.20031
[33] Sin, P., On the 1-cohomology of the groups \(G_2(2^n)\), Comm. Algebra, 20, 2653-2662 (1992) · Zbl 0793.20048
[34] Sin, P., Extensions of simple modules for \(Sp_4(2^n )\) and Suz \((2^m )\), Proc. London Math. Soc. (3), 65, 264-296 (1992) · Zbl 0771.20016
[35] Sin, P., Modular representations of the Hall-Janko group, Comm. Algebra, 24, 4513-4547 (1996) · Zbl 0890.20011
[36] Sin, P., Extensions of simple modules for \(G_2(3^n)\) and \(^2G_2(3^m)\), Proc. London Math. Soc. (3), 66, 327-357 (1993) · Zbl 0810.20013
[37] Suzuki, M., On a class of doubly transitive groups, Ann. Math., 75, 105-145 (1962) · Zbl 0106.24702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.