×

The Calogero model—anyonic representation, fermionic extension and supersymmetry. (English) Zbl 0941.81606

Summary: We discuss several applications and extensions of our previous operator solution of the \(N\)-body quantum-mechanical Calogero problem, i.e. \(N\) particles in one dimension subject to a two-body interaction of the form \(\frac 12\Sigma_{i,j} [(x_i-x_j)^2+g/(x_i-x_j^2]\). Using a complex representation of the deformed Heisenberg algebra underlying the Calogero model, we explicitly establish the equivalence between this system and anyons in the lowest Landau level. A construction based on supersymmetry is used to extend our operator method to include fermions, and we obtain an explicit solution of the supersymmetric Calogero model constructed by Freedman and Mende. We also show how the dynamical OSp\((2; 2)\) supersymmetry is realized by bilinears of modified creation and annihilation operators, and how to construct a supersymmetric extension of the deformed Heisenberg algebra.

MSC:

81V70 Many-body theory; quantum Hall effect
81Q60 Supersymmetry and quantum mechanics
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81T13 Yang-Mills and other gauge theories in quantum field theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Calogero, F., J. Math. Phys., 10, 2197 (1969)
[2] Calogero, F., J. Math. Phys., 12, 419 (1971)
[3] Perelomov, A. M., Teor. Mat. Fiz., 6, 364 (1971)
[4] Gambardella, P. J., J. Math. Phys., 16, 1172 (1975)
[5] Brink, L.; Hansson, T. H.; Vasiliev, M. A., Phys. Lett., B286, 109 (1992)
[6] Olshanetsky, M. A.; Perelomov, A. M., Phys. Rep., 94, 313 (1983)
[7] Kazakov, V. A., LPTENS 90/30 (1990), Preprint
[8] Olshanetsky, M. A., Int. J. Mod. Phys., A7, 4259 (1992)
[9] Polychronakos, A. P., Phys. Rev. Lett., 69, 703 (1992) · Zbl 0968.37521
[10] Gomez, C.; Sierra, G., Phys. Lett., B255, 51 (1991)
[11] Gorsky, A. S., JETP Lett, B54, 296 (1991)
[12] Makeenko, Yu.; Semenoff, G. W., Mod. Phys. Lett., A6, 3455 (1991) · Zbl 1020.81863
[13] Semikhatov, A. M., Nucl. Phys., B386, 139 (1992)
[14] Fradkin, E. S.; Vasiliev, M. A., Nucl. Phys., B291, 141 (1987)
[15] Blencowe, M. P., Class. Quant. Grav., 6, 443 (1989)
[16] Fradkin, E. S.; Linetsky, V. Ya., Ann. Phys. (NY), 198, 293 (1990) · Zbl 0875.17004
[17] Vasiliev, M. A., Phys. Lett., B285, 225 (1992)
[18] Vasiliev, M. A., Higher-spin gauge theories, (Keldysh, L. V.; Faynberg, V. Ya., Invited talk at the first Int. Sakharov Conf. on physics. Invited talk at the first Int. Sakharov Conf. on physics, 27-31 May 1991 (1992), Nova Science) · Zbl 1052.81071
[19] Fradkin, E. S.; Vasiliev, M. A., Ann. Phys. (NY), 177, 63 (1987)
[20] Vasiliev, M. A., Fortschr. Phys., 36, 33 (1988)
[21] Konstein, S. E.; Vasiliev, M. A., Nucl. Phys., B331, 475 (1990)
[22] Vasiliev, M. A., JETP Lett., 50, 374 (1989)
[23] Vasiliev, M. A., Int. J. Mod. Phys., A6, 1115 (1991) · Zbl 0738.58062
[24] Hansson, T. H.; Leinaas, J. M.; Myrheim, J., Nucl. Phys., B384, 559 (1992)
[25] Freedman, D. Z.; Mende, P. F., Nucl. Phys., B344, 317 (1990)
[26] Minahan, J. A.; Polychronakos, A. P., Integrable systems for particles with internal degrees of freedom, CU-TP-566 (1992), Preprint, Columbia preprint
[27] Perelomov, A., Generalized coherent states and their applications (1986), Springer: Springer Berlin · Zbl 0605.22013
[28] Heckman, G. J.; Opdam, E. M., Comput. Math., 64, 353 (1987) · Zbl 0656.17007
[29] Opdam, E. M., Comput. Math., 67, 191 (1988) · Zbl 0669.33008
[30] Dunkl, C. F., Trans. Am. Math. Soc., 311, 167 (1989) · Zbl 0652.33004
[31] Leinaas, J. M.; Myrheim, J., Phys. Rev., B37, 9286 (1988)
[32] Polychronakos, A. P., Nucl. Phys., B324, 597 (1989)
[33] Polychronakos, A. P., Phys. Lett., B264, 362 (1991)
[34] Bergshoeff, E.; de Wit, B.; Vasiliev, M., Nucl. Phys., B366, 315 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.