×

Killing vector fields and Lagrangian submanifolds of the nearly Kaehler \(S^6\). (English) Zbl 0907.53015

It is well known that the algebraic structure of the Cayley numbers can be used to define an almost complex structure \(J\) on the 6-dimensional unit sphere \(S^6\) turning \(S^6\) into a nearly Kähler manifold. A submanifold \(M\) of \(S^6\) is said to be totally real if \(J\) maps the tangent bundle \(TM\) of \(M\) into the normal bundle of \(M\), and it said to be almost complex if \(J\) leaves \(TM\) invariant.
The author gives a local classification of all 3-dimensional totally real submanifolds \(M\) of \(S^6\) admitting a unit Killing vector field whose integral curves are great circles. Roughly, they can be constructed from either superminimal almost complex curves in \(S^6\) or via Hopf lifts from holomorphic curves in complex projective plane \(\mathbb{C} P^2\).

MSC:

53B25 Local submanifolds
Full Text: DOI

References:

[1] Blair, D. E., Contact manifolds in Riemannian Geometry, (Lecture Notes in Mathematics, vol. 509 (1976), Springer: Springer Berlin) · Zbl 0239.53031
[2] Bolton, J.; Pedit, F.; Woodward, L. M., Minimal surfaces and the affine Toda field model, J. Reine Angew. Math., 459, 119-150 (1995) · Zbl 0810.53048
[3] Bolton, J.; Vrancken, L.; Woodward, L. M., On almost complex curves in the nearly Kähler 6-sphere, Quart. J. Math. Oxford Ser., 45, 2, 407-427 (1994) · Zbl 0861.53061
[4] J. Bolton, L. VranckenL. M. WoodwardJ. London Math. Soc.; J. Bolton, L. VranckenL. M. WoodwardJ. London Math. Soc. · Zbl 0906.53009
[5] Bolton, J.; Woodward, L. M., Congruence theorems for harmonic maps from a Riemannian surface into \(CP^n\) and \(S^n\), J. London Math. Soc., 45, 363-376 (1992) · Zbl 0763.53059
[6] Bryant, R. L., Submanifolds and special structures on the octonians, J. Differential Geom., 17, 185-232 (1982) · Zbl 0526.53055
[7] Chen, B. Y., Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60, 568-578 (1993) · Zbl 0811.53060
[8] Chen, B. Y.; Dillen, F.; Verstraelen, L.; Vrancken, L., Two equivariant totally real immersions into the nearly Kähler 6-sphere and their characterization, Japanese, J. Math. (N.S.), 21, 207-222 (1995) · Zbl 0831.53016
[9] Chen, B. Y.; Dillen, F.; Verstraelen, L.; Vrancken, L., Characterizing a class of totally real submanifolds of \(S^6(1)\) by their sectional curvatures, Tôhoku Math. J., 47, 185-198 (1995) · Zbl 0829.53049
[10] R. Deszcz, F. Dillen, L. Verstraelen\( \textsc{L. Vrancken}S^6\); R. Deszcz, F. Dillen, L. Verstraelen\( \textsc{L. Vrancken}S^6\)
[11] Dillen, F.; Verstraelen, L.; Vrancken, L., Classification of totally real 3-dimensional submanifolds of \(S^6(1)\) with \(K ≥ 116\), J. Math. Soc. Japan, 42, 565-584 (1990) · Zbl 0721.53047
[12] Dillen, F.; Vrancken, L., \(C\)-totally real submanifolds of Sasakian space forms, J. Math. Pures Appl., 69, 85-93 (1990) · Zbl 0654.53062
[13] Dillen, F.; Vrancken, L., Totally real submanifolds in \(S^6(1)\) satisfying Chen’s equality, Trans. Amer. Math. Soc., 348, 1633-1646 (1996) · Zbl 0882.53017
[14] Ejiri, N., Totally real submanifolds in a 6-sphere, (Proc. Amer. Math. Soc., 83 (1981)), 759-763 · Zbl 0474.53051
[15] Ejiri, N., Equivariant minimal immersions of \(S^2\) into \(S^{2m}\), Trans. Amer. Math. Soc., 297, 105-124 (1986) · Zbl 0636.53066
[16] Gray, A., Almost complex submanifolds of the six-sphere, (Proc. Amer. Math. Soc. (1969)), 277-279 · Zbl 0165.55803
[17] Harvey, R.; Lawson, H. B., Calibrated geometries, Acta Math., 148, 47-157 (1982) · Zbl 0584.53021
[18] Wood, R. M.W., Framing the exceptional Lie group \(G_2\), Topology, 15, 303-320 (1976) · Zbl 0336.57010
[19] Yano, K.; Ishihara, S., Invariant submanifolds of an almost contact manifold, Kodai Math. Sem. Rep., 21, 350-364 (1969) · Zbl 0197.18403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.