×

Backwards SDE with random terminal time and applications to semilinear elliptic PDE. (English) Zbl 0895.60067

Summary: Suppose \(\{{\mathcal I}_t\}\) is the filtration induced by a Wiener process \(W\) in \(R^d\), \(\tau\) is a finite \(\{{\mathcal I}_t\}\) stopping time (terminal time), \(\xi\) is an \({\mathcal I}_\tau\)-measurable random variable in \(R^k\) (terminal value) and \(f(\cdot,y,z)\) is a coefficient process, depending on \(y\in R^k\) and \(z\in L(R^d; R^k)\), satisfying \[ (y-\widetilde y) \bigl[f(s,y,z)-f(s, \widetilde y,z) \bigr]\leq-a | y-\widetilde y|^2 \] \((f\) need not be Lipschitz in \(y)\), and \[ \bigl| f(s,y,z)-f(s,y,\overline z) \bigr|\leq b\| z-\overline z\|, \] for some real \(a\) and \(b\), plus other mild conditions. We identify a Hilbert space, depending on \(\tau\) and on the number \(\gamma \equiv b^2-2a\), in which there exists a unique pair of adapted processes \((Y, Z)\) satisfying the stochastic differential equation \[ dY(s)=1_{\{s\leq\tau\}} \biggl[Z(s) dW(s)-f\bigl( s,Y(s),Z(s)\bigr) ds\biggr] \] with the given terminal condition \(Y(\tau)=\xi\), provided a certain integrability condition holds. This result is applied to construct a continuous viscosity solution to the Dirichlet problem for a class of semilinear elliptic PDE’s.

MSC:

60H20 Stochastic integral equations
35J60 Nonlinear elliptic equations
91B28 Finance etc. (MSC2000)
Full Text: DOI

References:

[1] BARLES, G., BUCKDAHN, R. and PARDOUX, E. 1997. Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 57 83. Z. · Zbl 0878.60036
[2] BARLES, G. and BURDEAU, J. 1995. The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Comm. Partial Differential Equations 20 129 178. Z. · Zbl 0826.35038 · doi:10.1080/03605309508821090
[3] BARLES, G. and MURAT, F. 1995. Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133 77 101. Z. · Zbl 0859.35031 · doi:10.1007/BF00375351
[4] CRANDALL, M., ISHII, H. and LIONS, P. L. 1992. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 1 67. Z. · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[5] DARLING, R. W. R. 1995. Constructing gamma-martingales with prescribed limit using backwards SDE. Ann. Probab. 23 1234 1261. Z. · Zbl 0839.58060 · doi:10.1214/aop/1176988182
[6] PARDOUX, E. and PENG, S. 1990. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55 61. Z. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[7] PARDOUX, E. and PENG, S. 1994. Some backward stochastic differential equations with nonLipschitz coefficients. Univ. Provence URA 225, Preprint 94-3. Z. · Zbl 0792.60050 · doi:10.1007/BF01192514
[8] PARDOUX, E., PRADEILLES, F. and RAO, Z. 1995. Probabilistic interpretation for a system of nonlinear parabolic partial differential equations. Ann. Inst. H. Poincare Probab. Śtatist. To appear. Z.
[9] PENG, S. 1991. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep. 37 61 74. Z. · Zbl 0739.60060
[10] REVUZ, D. and YOR, M. 1991. Continuous Martingales and Brownian Motion. Springer, Berlin. Z. · Zbl 0731.60002
[11] STROOCK, D. W. and VARADHAN, S. R. S. 1972. On degenerate elliptic-parabolic operators of second order and their associated diffusions. Comm. Pure Appl. Math. 25 651 713. · Zbl 0344.35041 · doi:10.1002/cpa.3160250603
[12] TAMPA, FLORIDA 33620-5700 39, RUE F. JOLIOT-CURIE E-MAIL: darling@math.usf.edu F-13453 MARSEILLE CEDEX France E-MAIL: pardoux@gyptis.univ-mrs.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.