×

A calculus of stochastic systems for the specification, simulation, and hidden state estimation of mixed stochastic/nonstochastic systems. (English) Zbl 0878.60091

Summary: We consider mixed systems containing both stochastic and nonstochastic components. To compose such systems, we introduce a general combinator which allows the specification of an arbitrary mixed system in terms of elementary components of only two types. Thus, systems are obtained hierarchically, by composing subsystems, where each subsystem can be viewed as an “increment” in the decomposition of the full system. The resulting mixed stochastic system specifications are generally not “executable”, since they do not necessarily permit the incremental simulation of the system variables. Such a simulation requires compiling the dependency relations existing between the system variables. Another issue involves finding the most likely internal states of a stochastic system from a set of observations. We provide a small set of primitives for transforming mixed systems, which allows the solution of the two problems of incremental simulation and estimation of stochastic systems within a common framework. The complete model is called CSS (a calculus of stochastic systems), and is implemented by the SIG language, derived from the SIGNAL synchronous language. Our results are applicable to pattern recognition problems formulated in terms of Markov random fields or hidden Markov models, and to the automatic generation of diagnostic systems for industrial plants starting from their risk analysis.

MSC:

60K99 Special processes
68M99 Computer system organization
Full Text: DOI

References:

[1] Alur, R.; Courcoubetis, C.; Dill, D., Model checking for probabilistic real-time systems, (Proc. 18th Internat. Coll. on Automata Languages and Programming, (ICALP) (1991)) · Zbl 0769.68088
[2] Basseville, M.; Nikiforov, I. V., Detection of Abrupt Changes: Theory and Applications (1993), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 1407.62012
[3] Benveniste, A., Constructive probability and the Signalea language: Building and handling random processes with programming, (Tech. Report 1532 (1991), Institut National de Recherche en Informatique et Automatique: Institut National de Recherche en Informatique et Automatique Rocquencourt, France)
[4] Benveniste, A.; Le Borgne, M.; Le Guernic, P., Hybrid systems the Signal approach, (Lecture Notes in Computer Science, Vol. 736 (1993), Springer: Springer Berlin), 230-254
[5] Benveniste, A.; Le Guernic, P., Hybrid dynamical systems theory and the Signal language, IEEE Trans. Automat. Control, 35, 535-546 (1990) · Zbl 0709.68012
[6] Dellacherie, C.; Meyer, P., Probabilités et Potentiels (1976), Hermann: Hermann Paris
[7] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Statist., 38, 325-339 (1967) · Zbl 0168.17501
[8] Dempster, A. P., A generalization of Bayesian inference (with discussion), J. Royal Statist. Soc. Ser. B, 30, 205-247 (1968) · Zbl 0169.21301
[9] Dempster, A. P., Construction and local computation aspects of network belief functions, (Oliver, R. M.; Smith, J. Q., Influence Diagrams, Belief Nets, and Decision Analysis (1990), Wiley: Wiley Chichester), 121-141, Ch. 6
[10] Dubes, R. C.; Jain, A. K., Random field models in image analysis, J. Appl. Statist., 12, 131-164 (1989)
[11] Forney, G. D., The Viterbi algorithm, (Proc. IEEE, 61 (1973)), 268-278
[12] Geman, S.; Geman, D., Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intell., 6, 721-741 (1984) · Zbl 0573.62030
[13] Giacalone, A.; Jou, C.; Smolka, S., Algebraic reasoning for probabilistic concurrent systems, (Proc. IFIP TC2 Working Conf. on Programming Concepts and Methods (1989))
[14] Hansson, H.; Jonsson, B., A calculus for communicating systems with time and probabilities, (Proc. 11th IEEE Real-Time Systems Symp.. Proc. 11th IEEE Real-Time Systems Symp., Los Alamitos (1990)), 278-287
[15] Harary, F., Graph Theory (1969), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0797.05064
[16] Hart, G. W., Nonintrusive appliance and load monitoring, (Proc. IEEE, 80 (1992)), 1870-1891
[17] Hart, S.; Sharir, M., Probabilistic prepositional temporal logic, Inform. and Control, 70, 97-155 (1986) · Zbl 0614.03024
[18] Jonsson, B.; Ho-Stuart, C.; Wang, Y., Testing and refinement for nondeterministic and probabilistic processes, (Lecture Notes in Computer Science, Vol. 863 (1994), Springer Verlag: Springer Verlag Berlin), 418-430
[19] Jonsson, B.; Larsen, K., Specification and refinement of probabilistic processes, (Proc. 6th IEEE Internat. Symp. on Logic in Computer Science. Proc. 6th IEEE Internat. Symp. on Logic in Computer Science, Amsterdam (1991)), 266-277
[20] Kindermann, R.; Snell, J. L., Markov Random Fields and their Applications (1980), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1229.60003
[21] Lauritzen, S. L.; Spiegelhalter, D. J., Local computations with probabilities on graphical structures and their application to expert systems (with discussion), J. Royal Statist. Soc. Ser. B, 50, 157-224 (1988) · Zbl 0684.68106
[22] Le Guernic, P.; Gauthier, T.; Le Borgne, M.; Le Maire, C., Programming real-time applications with Signal, (Proc. IEEE, 79 (1991)), 1321-1336
[23] Levy, B. C.; Benveniste, A.; Nikoukhah, R., High-level primitives for recursive maximum likelihood estimation, (Tech. Report 767 (1993), IRISA: IRISA Rennes, France) · Zbl 0860.93030
[24] Molloy, M., Performance analysis using stochastic Petri nets, IEEE Trans. Comput., 31, 913-917 (1982)
[25] Pearl, J., Fusion, propagation, and structuring in belief networks, Artificial Intelligence, 29, 241-288 (1986) · Zbl 0624.68081
[26] Peot, M. A.; Shachter, R. D., Fusion and propagation with multiple observations in belief networks, Artificial Intelligence, 48, 299-318 (1991) · Zbl 0738.68074
[27] Plateau, B.; Atif, K., Stochastic automata network for modeling parallel systems, IEEE Trans. Software Eng., 17, 1093-1108 (1991)
[28] Plateau, B.; Fourneau, J.-M., A methodology for solving Markov models of parallel systems, J. Parallel Distrib. Comput., 12, 370-387 (1991)
[29] Prum, B.; Fort, J., Stochastic Processes on a Lattice and Gibbs Measure (1991), Kluwer Academic: Kluwer Academic Boston, MA · Zbl 0726.60050
[30] Rabiner, L. R.; Juang, B. H., An introduction to hidden Markov models, IEEE ASSP Magazine, 3, 4-16 (1986)
[31] Robert, C., Modèles Statistiques pour l’Intelligence Artificielle (1991), Masson: Masson Paris
[32] Shafer, G., A Mathematical Theory of Evidence (1976), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0359.62002
[33] Shenoi, P. P.; Shafer, G., Axioms for probability and belief function propagation, (Shachter, R. D.; Levitt, T. S.; Kanal, L. N.; Lemmer, J. F., Uncertainty in Artificial Intelligence, Vol. 4 (1990), North-Holland: North-Holland Amsterdam), 169-198
[34] Soderstrom, T.; Stoica, P., System Identification (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0714.93056
[35] van Glabbeek, R.; Smolka, S. A.; Steffen, B.; Toffs, C., Reactive, generative, and stratified models of probabilistic processes, (Proc. 5th IEEE Internat. Symp. on Logic in Computer Science. Proc. 5th IEEE Internat. Symp. on Logic in Computer Science, Philadelphia, PA (1990)), 130-141
[36] Viswanadham, N.; Narahari, Y., Performance Modeling of Automated Manufacturing Systems (1992), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0800.90541
[37] Whittaker, J., Graphical Models in Applied Multivariate Statistics (1990), Wiley: Wiley New York · Zbl 0732.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.