×

Quadratic forms for the 1-D semilinear Schrödinger equation. (English) Zbl 0862.35111

This paper is concerned with the following initial value problem (IVP) for the 1-D semilinear Schrödinger equation: \[ i\partial_tu= i\partial^2_xu+N_j(u,\overline u),\quad x,t\in\mathbb{R},\quad u(x,0)=u_0(x), \] where \(N_1(u,\overline u)= c_1uu\), \(N_2(u,\overline u)=c_2u\overline u\), \(N_3(u,\overline u)=c_3\overline u\overline u\). The authors study local well posedness in the classical Sobolev space \(H^s\) of the associated IVP and the periodic boundary value problem (PBVP). Their main interest is to obtain the lowest value of \(s\) which guarantees the desired local well posedness result. They prove that at least for the above quadratic cases these values are negative and depend on the structure of nonlinearity considered. For \(s,b\in\mathbb{R}\), let \(X_{s,b}\) denote the completion of the Schwartz class \(S(\mathbb{R}^2)\) with respect to the norm \[ |F|_{X_{s,b}}= \Biggl(\int^\infty_{-\infty}\int^\infty_{-\infty}(1+|\tau-\xi^2|)^{2b}(1 +|\xi|)^{2s}|\widehat F(\xi,\tau)|^2d\xi d\tau\Biggr)^{1/2}. \] The authors prove the local well posedness for (IVP) in each case. The main part of the results is the following: In the case \(N_1(u,\overline u)\): For \(s\in(-3/4,0]\), there exists \(b\in(1/2,1)\) such that for any \(u_0\in H^s(\mathbb{R})\) the local well posedness is proved for a solution \(u\in C([-T,T], H^s(\mathbb{R})\cap X_{s,b})\). Analogously, in the cases \(N_2(u,\overline u): s\in(-1/4,0]\), \(N_3(u,\overline u): s\in(-3/4,0]\). They also obtain the well posedness of (PBVP) for the equation given above. The authors give a clear survey of results on these fields, especially for cases where the nonlinear term is \(N(z_1,z_2)= \sum_{|\alpha|\leq 5}a_\alpha z^{\alpha_1}z^{\alpha_2}_2\).
Reviewer: A.Tsutsumi (Osaka)

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
35P05 General topics in linear spectral theory for PDEs
Full Text: DOI

References:

[1] B. Birnir, C. E. Kenig, G. Ponce, N. Svanstedt and L. Vega, On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. (to appear). · Zbl 0855.35112
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107 – 156. , https://doi.org/10.1007/BF01896020 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209 – 262. · Zbl 0787.35098 · doi:10.1007/BF01895688
[3] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 22 Universidade Federal do Rio de Janeiro. · Zbl 0528.35008
[4] Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in \?^{\?}, Nonlinear Anal. 14 (1990), no. 10, 807 – 836. · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[5] D. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burger’s equation, SIAM J. Math. Anal. (to appear). · Zbl 0852.35123
[6] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9 – 36. · Zbl 0188.42601 · doi:10.1007/BF02394567
[7] Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44 – 52. · Zbl 0262.42007 · doi:10.1007/BF02771772
[8] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1 – 32. , https://doi.org/10.1016/0022-1236(79)90076-4 J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II. Scattering theory, general case, J. Funct. Anal. 32 (1979), no. 1, 33 – 71. · Zbl 0396.35029 · doi:10.1016/0022-1236(79)90077-6
[9] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 64 (1985), no. 4, 363 – 401. · Zbl 0535.35069
[10] Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 25 – 70. Lecture Notes in Math., Vol. 448.
[11] Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93 – 128. · Zbl 0549.34001
[12] Tosio Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 218 – 263. · Zbl 0698.35131 · doi:10.1007/3-540-51783-9_22
[13] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527 – 620. · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[14] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), no. 1, 1 – 21. · Zbl 0787.35090 · doi:10.1215/S0012-7094-93-07101-3
[15] C. E. Kenig, G. Ponce and L. Vega, Bilinear estimates with applications to the KdV equations, J. Amer. Math. Soc. (to appear). · Zbl 0848.35114
[16] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221 – 1268. · Zbl 0803.35095 · doi:10.1002/cpa.3160460902
[17] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, preprint. · Zbl 0832.35096
[18] Hans Lindblad, A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993), no. 2, 503 – 539. · Zbl 0797.35123 · doi:10.1215/S0012-7094-93-07219-5
[19] Gustavo Ponce and Thomas C. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 18 (1993), no. 1-2, 169 – 177. · Zbl 0803.35096 · doi:10.1080/03605309308820925
[20] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705 – 714. · Zbl 0372.35001
[21] Yoshio Tsutsumi, \?²-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115 – 125. · Zbl 0638.35021
[22] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189 – 201. · Zbl 0278.42005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.