×

Stress resultant geometrically nonlinear shell theory with drilling rotations. I: A consistent formulation. (English) Zbl 0849.73036

We present a consistent theoretical framework for a novel stress resultant geometrically nonlinear shell theory. The main feature of the present shell theory, which stands in contrast with the classical developments, is the presence of a rotation component around the shell normal (so-called drilling rotation) in the description of shell finite rotations. The relationship of the proposed theory with a finite deformation theory of a three-dimensional continuum with independent rotation field is clearly identified. Finally, the corresponding linearized form of the present shell theory is discussed.

MSC:

74K15 Membranes
Full Text: DOI

References:

[1] Naghdi, P. M., The Theory of Shells and Plates, (Flugge, S., Encyclopedia of Physics (1972), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0334.73028
[2] Pietraszkiewicz, W., Lagrangian description and incremental formulation in the nonlinear theory of thin shells, Internat. J. Nonlin. Mech., 19, 115-140 (1984) · Zbl 0537.73050
[3] Niordson, F. I., Shell Theory (1985), North-Holland: North-Holland Amsterdam · Zbl 0965.74042
[4] Başar, Y.; Kràzig, W. B., A consistent shell theory for finite deformations, Acta Mech., 76, 73-87 (1989) · Zbl 0664.73018
[5] Hughes, T. J.R.; Liu, W. K., Nonlinear finite element analysis of shells: Part I. Three-dimensional shells, Comput. Methods Appl. Mech. Engrg., 26, 331-362 (1981) · Zbl 0461.73061
[6] Dvorkin, E. N.; Bathe, K. J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. Comput., 1, 77-88 (1984)
[7] Ramm, E.; Matzenmiller, A., Large deformation shell analysis based on the degenerate concept, (Hughes, T. J.R.; Hinten, E., Finite Element Method for Plates and Shells (1986), Pineridge Press: Pineridge Press Swansea), 365-393
[8] Gruttmann, F.; Stein, E.; Wriggers, P., Theory and numerics of thin elastic shells with finite rotations, Ing. Arch., 59, 54-67 (1989)
[9] Park, K. C.; Pramono, E.; Stanley, G. M.; Cabiness, H. A., The ANS shell elements: Earlier developments and recent improvements, (Noor, A. K.; etal., Analytical and Computational Models for Shells. Analytical and Computational Models for Shells, ASME CED, Vol. 3 (1989)), 217-240
[10] Simo, J. C.; Fox, D. D., On a stress resultants geometrically exact shell model. Part I: Formulation and optimal parameterization, Comput. Methods Appl. Mech. Engrg., 72, 267-304 (1989) · Zbl 0692.73062
[11] Argyris, J. H.; Balmer, H.; Doltsinis, J. St.; Dunne, P. C.; Haase, M.; Kleiber, M.; Malejannakis, G. A.; Mlejnek, H. P.; Scharpf, D. W., Finite element method—The natural approach, Comput. Methods Appl. Mech. Engrg., 17/18, 1-106 (1979) · Zbl 0407.73058
[12] Simo, J. C., A finite strain beam formulation. The three-dimensional dynamic formulation, Comput. Methods Appl. Mech. Engrg., 49, 55-70 (1985), Part I · Zbl 0583.73037
[13] Budiansky, B., Notes on nonlinear shell theory, J. Appl. Mech., 35, 393-401 (1968)
[14] Reissner, E., Linear and nonlinear theory of shells, (Fung, Y. C.; Sechler, E. E., Thin Shell Structures: Theory, Experiment and Design (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ), 29-44
[15] Simmonds, J. G.; Danielson, D. A., Nonlinear shell theory with finite rotation and stress-function vectors, J. Appl. Mech., 39, 1085-1090 (1972) · Zbl 0248.73043
[16] Ibrahimbegović, A.; Frey, F., Stress resultant geometrically nonlinear shell theory with drilling rotations. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 118, 285-308 (1994) · Zbl 0849.73037
[17] Allman, D. J., A compatible triangular element including vertex rotations for plane elasticity problems, Comput. Struct., 19, 1-8 (1984) · Zbl 0548.73049
[18] Bergan, P. G.; Felippa, C. A., A triangular membrane element with rotational degrees of freedom, Comput. Methods Appl. Mech. Engrg., 50, 25-60 (1985) · Zbl 0593.73073
[19] Ibrahimbegović, A.; Taylor, R. L.; Wilson, E. L., A robust membrane quadrilateral element with drilling degrees of freedom, Internat. J. Numer. Methods Engrg., 30, 445-457 (1990) · Zbl 0729.73207
[20] Bergan, P. G.; Nygard, M. K., Nonlinear shell analysis using free formulation finite elements, (Bergan, P. G.; etal., Finite Element Method for Nonlinear Problems (1985), Springer-Verlag: Springer-Verlag Berlin), 317-338 · Zbl 0464.73084
[21] Jetteur, Ph.; Frey, F., A four node Marguerre element for nonlinear shell analysis, Engrg. Comput., 3, 276-282 (1986)
[22] Atluri, S. N., Alternate stress and conjugate strain measures and mixed variational formulations involving rigid rotations for computational analyses of finitely deformed solids with application to plates and shells, Comput. Struct., 18, 93-116 (1983) · Zbl 0524.73043
[23] Badur, J.; Pietraszkiewicz, W., On geometrically nonlinear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations, (Pietraszkiewicz, W., Finite Rotations in Structural Mechanics (1985), Springer-Verlag: Springer-Verlag Berlin), 19-32 · Zbl 0606.73079
[24] Ibrahimbegović, A.; Frey, F., Geometrically nonlinear shell theory with drilling rotations, (Wunderlich, W., Modeling of Shells With Nonlinear Behavior. Modeling of Shells With Nonlinear Behavior, EUROMECH, 292 (1992)), 6.1-6.4
[25] Sansour, C.; Bufler, H., An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation, Internat. J. Numer. Methods Engrg., 34, 73-115 (1992) · Zbl 0760.73043
[26] Gruttmann, F.; Wagner, W.; Wriggers, P., A nonlinear quadrilateral shells with drilling degrees of freedom, Ing. Arch. (1993), in press. · Zbl 0765.73067
[27] Fox, D. D.; Simo, J. C., A drill rotation formulation for geometrically exact shells, Comput. Methods Appl. Mech. Engrg., 98, 329-342 (1992) · Zbl 0764.73050
[28] Ibrahimbegović, A.; Frey, F.; Fonder, G.; Massonnet, Ch., A variational formulation for shallow shells, (Onate, E.; etal., Finite Elements in the 1990’s: A Book Dedicated to O.C. Zienkiewicz (1991), Springer-Verlag: Springer-Verlag Berlin), 68-80
[29] de Veubeke, B. Fraeijs, A new variational principle for finite elastic displacements, Int. J. Engrg. Sci., 10, 745-763 (1972) · Zbl 0245.73031
[30] Tessler, A., A \(C^0\) anisotropic three-node shallow shell element, Comput. Methods Appl. Mech. Engrg., 78, 89-103 (1990) · Zbl 0707.73075
[31] Ciarlet, Ph. G., Mathematical Elasticity, (Three-Dimensional Elasticity, Volume I (1988), North-Holland: North-Holland Amsterdam) · Zbl 0648.73014
[32] Gurtin, M., An Introduction to Continuum Mechanics (1981), Academic Press: Academic Press New York · Zbl 0559.73001
[33] Simmonds, J. G., A Brief on Tensor Analysis (1982), Springer-Verlag: Springer-Verlag Berlin · Zbl 0482.53011
[34] Reissner, E., A note on two-dimensional finite-deformation theories of shells, Internat. J. Nonlin. Mech., 17, 217-221 (1982) · Zbl 0492.73034
[35] Simo, J. C.; Vu-Quoc, L., A three-dimensional finite-strain model. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 58, 79-116 (1986) · Zbl 0608.73070
[36] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice-Hall: Prentice-Hall Englewoods Cliffs, NJ · Zbl 0545.73031
[37] Goldstein, H., Classical Mechanics (1980), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0491.70001
[38] Marsden, J. E.; Tromba, A. J., Vector Calculus (1976), Freeman & Co: Freeman & Co San Francisco, CA · Zbl 0322.26010
[39] Koiter, W. T., On the complementary energy theorem in nonlinear elasticity, (Fichera, G., Trends in Applications of Pure Mathematics to Mechanics (1976), Pitman), 207-232 · Zbl 0348.73022
[40] Reissner, E., Formulation of variational theorems in geometrically nonlinear elasticity, J. ASCE Engrg. Mech. Div., 110, 1377-1390 (1984)
[41] Ibrahimbegović, A.; Frey, F., Membrane finite elements with drilling rotations for geometrically nonlinear elasticity, Internat. J. Numer. Methods Engrg. (1993), in press.
[42] Simo, J. C.; Fox, D. D.; Hughes, T. J.R., Formulation of finite elasticity with independent rotations, Comput. Methods Appl. Mech. Engrg., 95, 277-285 (1992) · Zbl 0759.73022
[43] Hughes, T. J.R.; Brezzi, F., On drilling degrees of freedom, Comput. Methods Appl. Mech. Engrg., 72, 105-121 (1989) · Zbl 0691.73015
[44] Carey, G. F.; Oden, J. T., Finite Elements: A Second Course (1983), Prentice-Hall Inc: Prentice-Hall Inc Englewoods Cliffs, NJ · Zbl 0515.65075
[45] Ibrahimbegović, A., Mixed finite element with drilling rotations for plane problems in finite elasticity, Comput. Methods Appl. Mech. Engrg., 107, 225-238 (1993) · Zbl 0783.73070
[46] Hughes, T. J.R.; Pister, K. S., Consistent linearization in mechanics of solids and structures, Comput. Struct., 8, 391-397 (1978) · Zbl 0377.73046
[47] Argyris, J., An excursion into large rotations, Comput. Methods Appl. Mech. Engrg., 32, 85-155 (1982) · Zbl 0505.73064
[48] Ibrahimbegović, A.; Frey, F., Stress resultant geometrically nonlinear shell theory with drilling rotations. Part III: Linearized kinematics, Internat. J. Numer. Methods Engrg., 37 (1993), in press.
[49] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[50] Ibrahimbegović, A.; Frey, F., Geometrically nonlinear method of incompatible modes in application to finite elasticity with independent rotations, Internat. J. Numer. Methods Engrg., 36, 4185-4200 (1993) · Zbl 0795.73073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.