×

The determination of quasistationary distributions directly from the transition rates of an absorbing Markov chain. (English) Zbl 0835.60060

Summary: There are many stochastic systems arising in areas as diverse as wildlife management, chemical kinetics and reliability theory, which eventually “die out”, yet appear to be stationary over any reasonable time scale. The notion of a quasistationary distribution has proved to be a potent tool in modelling this behaviour. In finite-state systems the existence of a quasistationary distribution is guaranteed. However, in the infinite-state case this may not always be so, and the question of whether or not quasistationary distributions exist requires delicate mathematical analysis. The purpose of this paper is to present simple conditions for the existence of quasistationary distributions for continuous-time Markov chains and to demonstrate how these can be applied in practice.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
Full Text: DOI

References:

[1] Oppenheim, I.; Schuler, K. K.; Weiss, G. H., Stochastic theory of nonlinear rate processes with multiple stationary states, Physica, 88A, 191-214 (1977)
[2] Turner, J. W.; Malek-Mansour, M., On the absorbing zero boundary problem in birth and death processes, Physica, 93A, 517-525 (1978)
[3] Dambrine, S.; Moreau, M., Note on the stochastic theory of a self-catalytic chemical reaction, I, Physica, 106A, 559-573 (1981)
[4] Dambrine, S.; Moreau, M., Note on the stochastic theory of a self-catalytic chemical reaction, II, Physica, 106A, 574-588 (1981)
[5] Parsons, R. W.; Pollett, P. K., Quasistationary distributions for some autocatalytic reactions, J. of Statist. Phys., 46, 249-254 (1987)
[6] Pollett, P. K., On the problem of evaluating quasistationary distributions for open reaction schemes, J. Statist. Phys., 53, 1207-1215 (1988) · Zbl 0683.60057
[7] Kalpakam, S.; Shahul Hameed, M. A., Quasi-stationary distribution of a two-unit warm-standby redundant system, J. Appl. Probab., 20, 429-435 (1983) · Zbl 0529.60089
[8] Pijnenburg, M.; Ravichandran, N., Quasi-stationary distribution of a two-unit dependent parallel system (1990), Eindhoven University of Technology, Preprint · Zbl 0755.60070
[9] Pijnenburg, M.; Ravichandran, N.; Regterschot, G., Stochastic analysis of a dependent parallel system (1990), Eindhoven University of Technology, Preprint · Zbl 0792.90031
[10] Scheffer, V. B., The rise and fall of a reindeer herd, Sci. Monthly, 73, 356-362 (1951)
[11] Mech, L. D., The wolves of Ilse Royale, (Fauna of the National Parks: U.S. Fauna Series, 7 (1966), U.S. Govt. Printing Office: U.S. Govt. Printing Office Washington, DC)
[12] Klein, D. R., The introduction, increase, and crash of reindeer on St. Matthew Island, J. Wildlife Man., 32, 351-367 (1968)
[13] Holling, C. S., Resilience and stability of ecological systems, Ann. Rev. Ecol. Systematics, 4, 1-23 (1973)
[14] Pakes, A. G., Limit theorems for the population size of a birth and death process allowing catastrophes, J. Math. Biol., 25, 307-325 (1987) · Zbl 0642.92012
[15] Pollett, P. K., On the long-term behaviour of a population that is subject to large-scale mortality or emigration, (Kumar, S., Proceedings of the \(8^{th}\) National Conference of the Australian Society for Operations Research (1987)), 196-207
[16] Pakes, A. G.; Pollett, P. K., The supercritical birth, death and catastrophe process: Limit theorems on the set of extinction, Stochastic Process. Appl., 32, 161-170 (1989) · Zbl 0726.60084
[17] Yaglom, A. M., Certain limit theorems of the theory of branching processes, Dokl. Acad. Nauk SSSR, 56, 795-798 (1947) · Zbl 0041.45602
[18] Vere-Jones, D., Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford, Ser. 2, 13, 7-28 (1962) · Zbl 0104.11805
[19] Kingman, J. F.C., The exponential decay of Markov transition probabilities, (Proc. London Math. Soc., 13 (1963)), 337-358 · Zbl 0154.43003
[20] Darroch, J. N.; Seneta, E., On quasi-stationary distributions in absorbing continuous-time finite Markov chains, J. Appl. Probab., 4, 192-196 (1967) · Zbl 0168.16303
[21] Good, P., The limiting behaviour of transient birth and death processes conditioned on survival, J. Austral. Math. Soc., 8, 716-722 (1968) · Zbl 0185.46002
[22] Vere-Jones, D., Some limit theorems for evanescent processes, Austral. J. Statist., 11, 67-78 (1969) · Zbl 0188.23302
[23] Flaspohler, D. C., Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains, Ann. Inst. Statist. Math., 26, 351-356 (1974) · Zbl 0344.60039
[24] Tweedie, R. L., Some ergodic properties of the Feller minimal process, Quart. J. Math. Oxford, 25, 485-495 (1974) · Zbl 0309.60046
[25] Cavender, J. A., Quasistationary distributions for birth-death processes, Adv. Appl. Probab., 10, 570-586 (1978) · Zbl 0381.60068
[26] van Doorn, E. A., Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes, Adv. Appl. Probab., 23, 683-700 (1991) · Zbl 0736.60076
[27] Kijima, M.; Seneta, E., Some results for quasi-stationary distributions of birth-death processes, Adv. Appl. Probab., 28, 503-511 (1991) · Zbl 0738.60081
[28] Kijima, M., Quasi-limiting distributions of skip-free to the left Markov chains in continuous-time (1992), University of Tsukuba: University of Tsukuba Tokyo, Preprint
[29] van Doorn, E. A.; Kijima, M., Asymptotics for birth-death polynomials and quasi-limiting distributions for birth-death processes (1992), University of Twente, Preprint · Zbl 0882.60083
[30] Anderson, W. J., Continuous-time Markov Chains: An Applications Oriented Approach (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0731.60067
[31] Pollett, P. K.; Taylor, P. G., On the problem of establishing the existence of stationary distributions forcontinuous-time Markov chains, Probab. Eng. Informat. Sci., 7, 529-543 (1993)
[32] Nair, M. G.; Pollett, P. K., On the relationship between μ-invariant measures and quasistationary distributions for continuous-time Markov chains, Adv. Appl. Probab., 25, 82-102 (1993) · Zbl 0774.60070
[33] Pollett, P. K., On the equivalence of μ-invariant measures for the minimal process and its \(q\)-matrix, Stochastic Process. Appl., 22, 203-221 (1986) · Zbl 0658.60099
[34] Pollett, P. K., Reversibility, invariance and μ-invariance, Advances in Applied Probability, 20, 600-621 (1988) · Zbl 0654.60058
[35] Pollett, P. K.; Vere-Jones, D., A note on evanescent processes, Austral. J. Statist., 34, 531-536 (1992) · Zbl 0772.60053
[36] Knopp, K., Infinite Sequences and Series (1956), Dover: Dover New York · Zbl 0070.05807
[37] Mandl, P., On the asymtotic behaviour of probabilities within groups of states of a homogeneous Markov process, Cas. pest. mat., 85, 448-456 (1960) · Zbl 0129.10802
[38] Pollett, P. K.; Stewart, D. E., An efficient procedure for computing quasistationary distributions of Markov chains with sparse transition structure, Adv. Appl. Probab., 26, 68-79 (1994) · Zbl 0797.60060
[39] Golub, G. H.; van Loan, C., Matrix Computations (1989), John Hopkins Press · Zbl 0733.65016
[40] Pollett, P. K.; Roberts, A. J., A description of the long-term behaviour of absorbing continuous-time Markov chains using a centre manifold, Adv. Appl. Probab., 22, 111-128 (1990) · Zbl 0714.60062
[41] Pollett, P. K., On a model for interference between searching insect parasites, J. Austral. Math. Soc. Ser. B, 31, 133-150 (1990) · Zbl 0711.92021
[42] Pollett, P. K., Diffusion approximations for a circuit switching network with random alternative routing, Austral. Telecom. Res., 25, 45-52 (1992)
[43] Pollett, P. K.; Vassallo, A., Diffusion approximations for some simple chemical reaction schemes, Adv. Appl. Probab., 24, 875-893 (1992) · Zbl 0762.60065
[44] Athreya, K. B.; Ney, P. E., Branching Processes (1972), Springer-Verlag: Springer-Verlag Berlin · Zbl 0259.60002
[45] Seneta, E., Non-negative Matrices and Markov Chains (1973), Springer-Verlag: Springer-Verlag New York · Zbl 0278.15011
[46] Tweedie, R. L., The calculation of limit probabilities for denumerable Markov processes from infinitesimal properties, J. Appl. Probab., 10, 84-99 (1973) · Zbl 0258.60051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.