×

Three-dimensional perturbation solution for a dynamic planar crack moving unsteadily in a model elastic solid. (English) Zbl 0806.73056

The authors use a model elastodynamic theory to study the propagation of a crack along a plane in an unbounded solid. Let the crack front motion \(x= v_ 0 t+ \varepsilon f(z,t)\), \(y=0\) correspond at \(\varepsilon=0\) to a straight crack propagating along the \(x\)-axis in the space \((x,y,z)\) with a uniform velocity \(v_ 0>0\). According to the method of perturbations, the authors write the displacement field as \(u(x,y,z, t;\varepsilon)= u_ 0 (x,y,t)+ \varepsilon\varphi (x,y,z,t)+ O(\varepsilon^ 2)\) when \(\varepsilon\to 0\). The function \(u_ 0 (x,y,t)\) is the well-known solution of the plane problem. The first order perturbation term \(\varphi\) satisfies the wave equation \(c^ 2 \nabla^ 2 \varphi=\partial^ 2 \varphi/\partial t^ 2\) in the half-space \(y>0\) and the boundary conditions \(\partial\varphi/\partial y(x,0,z,t) =0\), \(x<v_ 0 t\); \(\varphi(x,0,z,t) =0\), \(x>v_ 0 t\). Let the polar coordinates be understood to denote \(r\exp (i\theta)= x-v_ 0 t+i (1- (v_ 0/ c)^ 2)^{1/2} y\). Then it is proved that the function \(\varphi\) satisfies the asymptotic relation \(\lim_{r\to 0} \{\varphi (x,y,z,t) r^{1/2}\}= F(z,t)\sin (\theta/2)\), where \(F(z,t)\) is a given continuous function. Moreover, the function \(\varphi\) has been found in closed form by the Fourier transformation.

MSC:

74R99 Fracture and damage
35L05 Wave equation
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, A., (Handbook of Mathematical Functions (1972), Dover: Dover New York) · Zbl 0543.33001
[2] Aki, K.; Richards, P. G., Quantitative Seismology: Theory and Methods (1980), W.H. Freeman and Company: W.H. Freeman and Company San Francisco
[3] Ben-Zion, Y., The response of two joined quarter spaces to SH line sources located at the material discontinuity interface, Geophys. J. Int., 98, 213-222 (1989) · Zbl 0716.73072
[4] Boatwright, J.; Quin, H., The seismic radiation from a 3-D dynamic model of a complex rupture process. Part I: confined ruptures, (Das, S.; Boatwright, J.; Sholz, C. H., Earthquake Source Mechanics (1986), American Geophysical Union: American Geophysical Union Washington, DC), 97-109
[5] Cagniard, L., Reflexion et Refraction es Ondes Seismiques Progressives (1939), Gauthier-Villiars: Gauthier-Villiars Paris · JFM 65.1490.02
[6] Cagniard, L., Reflection and Refraction of Progressive Seismic Waves (1962), McGraw-Hill: McGraw-Hill New York, translated and revised by E.A. Flinn and C.H. Dix · Zbl 0116.24001
[7] Cotterell, B.; Rice, J. R., Slightly curved or kinked cracks, Int. J. Fract., 16, 155-169 (1980)
[8] Das, S.; Kostrov, B. V., An investigation of the complexity of the earthquake source time function using dynamic faulting models, J. Geophys. Res., 93, 8035-8050 (1988)
[9] de Hoop, A. T., A modification of Cagniard’s method for solving seismic pulse problems, Appl. Sci. Res., B8, 349-356 (1961) · Zbl 0100.44208
[10] Dmowska, R.; Rice, J. R., Fracture theory and its seismological application, (Teisseyre, R., Continuum Theories in Solid Earth Physics. Continuum Theories in Solid Earth Physics, Physics and Evolution of the Earth’s Interior, Vol. 3 (1986), Elsevier and Polish Scientific Publishers), 187-255, of series
[11] Eshelby, J. D., The elastic field of a crack extending non-uniformly under general antiplane loading, J. Mech. Phys. Solids, 17, 177 (1969) · Zbl 0172.51302
[12] Eshelby, J. D., The starting of a crack, (Argon, A. S., Physics of Strength and Plasticity (1969), The MIT Press: The MIT Press Cambridge and London), 263-275
[13] Eshelby, J. D., Energy relations and the energy-momentum tensor in continuum mechanics, (Kanninen, M. F.; Adler, W. F.; Rosenfield, A. R.; Jaffe, R. I., Inelastic Behavior of Solids (1970), McGraw-Hill: McGraw-Hill New York), 77-115
[14] Fares, N., Crack fronts trapped by arrays of obstacles: numerical solutions based on surface integral representations, J. Appl. Mech., 56, 837-843 (1989)
[15] Fineberg, J.; Gross, S. P.; Marder, M.; Swinney, H. L., An instability in the propagation of fast cracks, Phys. Rev. B, 45, 5146-5154 (1992)
[16] Fossum, A. F.; Freund, L. B., Non-uniformly moving shear crack model of shallow focus earthquake mechanics, J. Geophys. Res., 80, 3343-3347 (1975)
[17] Freund, L. B., Crack propagation in an elastic solid subject to general loading—I. Constant rate of extension.—II. Non-uniform rate of extension, J. Mech. Phys. Solids, 20, 141-152 (1972) · Zbl 0237.73099
[18] Freund, L. B., Energy flux into the tip of an extending crack in an elastic solid, J. Elasticity, 2, 341-349 (1972)
[19] Gao, H., Surface roughening and branching instabilities in dynamic fracture, J. Mech. Phys. Solids, 41, 457-486 (1993)
[20] Gao, H.; Rice, J. R., A first-order perturbation analysis of crack trapping by arrays of obstacles, J. Appl. Mech., 56, 828-836 (1989) · Zbl 0729.73264
[21] Gross, S. P.; Fineberg, J.; Marder, M.; McCormick, W. D.; Swinney, H. L., Acoustic emissions from rapidly moving cracks, Phys. Rev. Lett., 71, 3162-3165 (1993)
[22] Knauss, W. G.; Ravi-Chandar, K., Some basic problems in stress wave dominated fracture, Int. J. Fract., 27, 127-143 (1985)
[23] Kostrov, B. V., Unsteady propagation of longitudinal shear cracks, (Appl. Math. Mech.. Appl. Math. Mech., Prikl. Mat. i Mek., 30 (1966)), 1241-1248, English translation of
[24] Kostrov, B. V., On the crack propagation with variable velocity, Int. J. Fract., 11, 47-56 (1975)
[25] Perrin, G.; Rice, J. R., Disordering of a dynamic planar crack front in a model elastic medium of randomly variable toughness, J. Mech. Phys. Solids (1994), in press · Zbl 0814.73046
[26] Rice, J. R., The mechanics of earthquake rupture, (Dziewonski, A. M.; Boschi, E., Proc. International School of Physics Enrico Fermi, Course 78. Proc. International School of Physics Enrico Fermi, Course 78, 1979. Proc. International School of Physics Enrico Fermi, Course 78. Proc. International School of Physics Enrico Fermi, Course 78, 1979, Physics of the Earth’s Interior (1980), Italian Physical Society and North-Holland Publ. Co), 555-649
[27] Rice, J. R., First order variation in elastic fields due to variation in location of a planar crack front, J. Appl. Mech., 52, 571-579 (1985) · Zbl 0571.73104
[28] Rice, J. R., Weight function theory for three-dimensional elastic crack analysis, (Wei, R. P.; Gangloff, R. P., Fracture Mechanics: Perspective and Directions (Twentieth Symposium), Special Technical Publication 1020 (1989), ASTM: ASTM Philadelphia), 29-57
[29] Yoffe, E. H., The moving Griffith crack, Phil. Mag., 42, 739-750 (1951) · Zbl 0043.23504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.