×

Applications of the degree theorem to absolute continuity on Wiener space. (English) Zbl 0794.60033

Let \((\Omega,H,P)\) be an abstract Wiener space and define a shift on \(\Omega\) by \(T(\omega)=\omega+F(\omega)\) where \(F\) is an \(H\)-valued random variable. We study the absolute continuity of the measures \(P \circ T^{-1}\) and \((\Lambda_ FP) \circ T^{-1}\) with respect to \(P\) by using the techniques of the degree theory of Wiener maps, where \[ \Lambda_ F=\text{det}_ 2 (1+\nabla F) \text{Exp} \{-\delta F- \textstyle{{1 \over 2}} | F |^ 2\}. \]
Reviewer: A.S.Üstünel

MSC:

60G30 Continuity and singularity of induced measures
60H07 Stochastic calculus of variations and the Malliavin calculus
Full Text: DOI

References:

[1] Buckdahn, R.: Transformations on the Wiener space and Skorohod-type stochastic differential equations. Sekt. Math. Nr. 105 Seminarber., Humboldt-Univ. Berlin, 1989 · Zbl 0685.60062
[2] Dunford, N., Schwartz, J.T.: Linear operations, vol. II. New York: Interscience 1957
[3] Getzler, E.: Degree theory for Wiener maps. J. Funct. Anal.68, 388-403 (1986) · Zbl 0663.58035 · doi:10.1016/0022-1236(86)90105-9
[4] Guillemin, V., Pollack, A.: Differential topology. Englewood Cliffs, NJ: Prentice Hall 1974 · Zbl 0361.57001
[5] Kailath, T., Zakai, M.: Absolute continuity and Radon-Nikodym derivatives for certain measures relative to Wiener measure. Ann. Math. Stat.42, 130-140 (1971) · Zbl 0226.60061 · doi:10.1214/aoms/1177693500
[6] Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Berlin Heidelberg New York: Springer 1988 · Zbl 0638.60065
[7] Kusuoka, S.: The nonlinear transformation of Gaussian measure on banach space and its absolute continuity. J. Fac. Sci., Tokyo Univ., Sect. I.A.29, 567-597 (1982) · Zbl 0525.60050
[8] Kusuoka, S.: Some remarks on Getzler’s degree theorem. In: Proc. of 5th Japan USSR Symp. (Lect. Notes Math., vol. 1299, pp. 239-249) Berlin Heidelberg New York: Springer 1988 · Zbl 0638.60074
[9] Malliavin, P.: Implicit functions in finite corank on the Wiener space. In: Ito, K. (ed.) Proc. of Taniguchi Intern. Symp. on Stochastic Analysis, pp. 369-386. Tokyo: Kinokuniya 1983
[10] Nualart, D.: Nonlinear transformations of the Wiener measure and applications. In: Mayer-Wolf, E., Merzbach, E., Schwartz, A. (eds.) Stochastic analysis, pp. 397-431. New York: Academic Press 1991 · Zbl 0794.60034
[11] Nualart, D., Zakai, M.: Generalized stochastic integrals and the Malliavin calculus. Probab. Theory Relat. Fields73, 255-280 (1986) · Zbl 0601.60053 · doi:10.1007/BF00339940
[12] Orey, S.: Radon-Nikodým derivatives of probability measures: Martingale methods. Publ. Dep. Found. Math. Sci., Tokyo University of Education 1974
[13] Ramer, R.: On nonlinear transformations of Gaussian measures. J. Funct. Anal.15, 166-187 (1974) · Zbl 0288.28011 · doi:10.1016/0022-1236(74)90017-2
[14] Üstünel, A.S., Zakai, M.: Transformations of Wiener measure under anticipative flows. Probab. Theory Relat. Fields93, 91-136 (1992) · Zbl 0767.60046 · doi:10.1007/BF01195390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.