×

A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. (English) Zbl 0792.60018

With the help of an extension of Hoeffding’s equality, we develop a way for estimating the covariance structures for empirical functions of associated sequences in terms of covariances of the original random variables. Based on these estimations, a Glivenko-Cantelli lemma for associated sequences and weak convergence for empirical processes of stationary associated sequences are obtained, all under the conditions on covariances of the original random variables.
Reviewer: H.Yu (Ottawa)

MSC:

60F05 Central limit and other weak theorems
62G07 Density estimation
Full Text: DOI

References:

[1] Barlow, R.E., Proschan, F.: Statistical theory of reliability and life testing: Probability models. Silver Spring, MD: to begin with publishes 1981 · Zbl 0379.62080
[2] Billingsley, P.: Convergence of probability measures New York: Wiley 1968 · Zbl 0172.21201
[3] Birkel, T.: The invariance principle for associated processes. Stochastic Processes Appl.27, 57-71 (1987) · Zbl 0632.60001 · doi:10.1016/0304-4149(87)90005-6
[4] Birkel, T.: A note on the strong law of large numbers for positively dependent random variables. stat. Probab. Lett.7, 17-20 (1989) · Zbl 0661.60048 · doi:10.1016/0167-7152(88)90080-6
[5] Block, H.W., Fang, Z.: A multivariate extension of Höeffding’s lemma. Ann. Probab.16, 1803-1820 (1988) · Zbl 0651.62042 · doi:10.1214/aop/1176991598
[6] Burton, R.M., Dabrowski, A.R., Dehling, H.: An invariance principle for weakly associated random variables. Stochastic Processes Appl.23, 301-306 (1986) · Zbl 0611.60028 · doi:10.1016/0304-4149(86)90043-8
[7] Chung, K.L.: A course in probability theory, 2nd edn. New York: Academic Press 1974 · Zbl 0345.60003
[8] Cox, J.T., Grimmett, G.: Central limit theorems for associated random variables and the percolation model. Ann. Probab.12, 514-528 (1984) · Zbl 0536.60094 · doi:10.1214/aop/1176993303
[9] Csörg?, M., Csörg?, S., Horváth, L.: An asymptotic theory for empirical reliability and concentration processes. (Lect. Notes Stat., vol. 33) Berlin Heidelberg New York: Springer 1986 · Zbl 0605.62105
[10] Dabrowski, A.R., Dehling, H.: A Berry-Esséen theorem and a functional law of the iterated logarithm for weakly associated random variables. Stochastic Processes Appl.30, 277-289 (1988) · Zbl 0665.60027 · doi:10.1016/0304-4149(88)90089-0
[11] Esary, J., Proschan, F., Walkup, D.: Association of random variables with applications. Ann. Math. Stat.38, 1466-1474 (1967) · Zbl 0183.21502 · doi:10.1214/aoms/1177698701
[12] Höeffding, W.: Masstabinvariante Korrelations-theorie. Schr. Math. Inst. Univ. Berlin.5, 181-233 (1940)
[13] Joag-Dev, K.: Independence via uncorrelatedness under certain dependence structures. Ann. Probab.11, 1037-1041 (1983) · Zbl 0542.62046 · doi:10.1214/aop/1176993452
[14] Jogdeo, K.: Characterizations of independence in certain families of bivariate and multivariate distributions. Ann. Math. Stat.39, 433-441 (1968) · Zbl 0164.49106 · doi:10.1214/aoms/1177698407
[15] Lebowitz, J.: Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems. Commun. Math. Phys.28, 313-321 (1972) · doi:10.1007/BF01645632
[16] Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119-128 (1980) · Zbl 0429.60096 · doi:10.1007/BF01197754
[17] Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys.91, 75-80 (1983) · Zbl 0528.60024 · doi:10.1007/BF01206051
[18] Newman, C.M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Tong, Y.L. (ed.) Inequalities in statistics and probability. Hayward, CA: Inst. Math. Stat. 1984
[19] Newman, C.M., Wright, A.L.: An invariance principle for certain dependent sequences. Ann. Probab.9, 671-675 (1981) · Zbl 0465.60009 · doi:10.1214/aop/1176994374
[20] Wood, T.E.: A Berry-Esséen theorem for associated random variables. Ann. Probab.11, 1042-1047 (1983) · Zbl 0522.60017 · doi:10.1214/aop/1176993453
[21] Wood, T.E.: A local limit theorem for associated sequences. Ann. Probab.13, 625-629 (1985) · Zbl 0563.60028 · doi:10.1214/aop/1176993015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.