×

Ubiquity of ring structures in the control space of complex oscillators. (English) Zbl 07867354


MSC:

34Cxx Qualitative theory for ordinary differential equations
92Cxx Physiological, cellular and medical topics
37Gxx Local and nonlocal bifurcation theory for dynamical systems
Full Text: DOI

References:

[1] Ohtsubo, J., Semiconductor Lasers: Stability, Instability and Chaos, 2017, Springer: Springer, Berlin · Zbl 1329.78002
[2] Epperlein, P. W., Semiconductor Laser Engineering, Reliability and Diagnostics, 2013, Wiley: Wiley, Chichester
[3] in Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, edited by S. Nakamura and S.F. Chichibu (Taylor and Francis, London, 2000).
[4] de Pillis, L. G.; Radunskaya, A., The dynamics of an optimally controlled tumor model: A case study, Math. Comput. Model., 37, 1221-1244, 2003 · Zbl 1043.92018 · doi:10.1016/S0895-7177(03)00133-X
[5] Gallas, M. R.; Gallas, M. R.; Gallas, J. A. C., Distribution of chaos and periodic spikes in a three-cell population model of cancer, Eur. Phys. J.: Spec. Top., 233, 2131-2144, 2014 · doi:10.1140/epjst/e2014-02254-3
[6] Isea, R.; Lonngren, K., A mathematical model of cancer under radiotherapy, Int. J. Public Health Res., 3, 340-344, 2015
[7] Liu, Z.; Yang, C., A mathematical model of cancer treatment by radiotherapy, Comput. Math. Methods Med., 2014, 172923, 2014 · Zbl 1423.92101 · doi:10.1155/2014/172923
[8] Jiménez, R. P.; Hernandez, E. O., Tumour-host dynamics under radiotherapy, Chaos, Solitons Fractals, 44, 685-692, 2011 · Zbl 1402.92253 · doi:10.1016/j.chaos.2011.06.001
[9] Freedman, H. I.; Belostotski, G., Perturbed models for cancer treatment by radiotherapy, Differ. Eqs. Dyn. Syst., 17, 115-133, 2009 · Zbl 1207.34057 · doi:10.1007/s12591-009-0009-7
[10] Ramírez-Ávila, G. M., Estudio teórico de la acción de radiaciones ionizantes en la dinámica poblacional de células cancerosas, Rev. Boliviana Fis., 31, 25-24, 2017
[11] Canezo-Gómez, W. A.; Rodrigo, G.; Ramírez-Ávila, G. M., Análisis de la dinámica poblacional de células cancerosas, mediante un modelo de radiosensibilidad, Rev. Boliviana Fis., 35, 5-14, 2019
[12] Rohde, U.; Apte, A. M., Everything you always wanted to know about Colpitts oscillators, IEEE Microw. Mag., 17, 59-76, 2016 · doi:10.1109/MMM.2016.2561498
[13] Rohde, U.; Poddar, A. K.; Böck, G., The Design of Modern Microwave Oscillators for Wireless Applications, 2005, Wiley: Wiley, New York
[14] Gatare, I.; Sciamanna, M.; Buesa, J.; Thienpont, H.; Panajotov, K., Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection, Appl. Phys. Lett., 88, 101106, 2006 · doi:10.1063/1.2181649
[15] Torre, M.; Hurtado, A.; Quirce, A.; Valle, A.; Pesquera, L.; Adams, M. J., Polarization switching in long-wavelength VCSELs subject to orthogonal optical injection, IEEE J. Quantum Electron., 47, 92-99, 2011 · doi:10.1109/JQE.2010.2061219
[16] Gatare, I.; Sciamanna, M.; Nizette, M.; Thienpont, H.; Panajotov, K., Phys. Rev. E, 80, 026218, 2009 · doi:10.1103/PhysRevE.80.026218
[17] Aoyama, H.; Tomida, S.; Shogenji, R.; Ohtsubo, J., Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback, Optics Commun., 284, 1405-1411, 2011 · doi:10.1016/j.optcom.2010.10.099
[18] Pikovsky, A.; Politi, A., Lyapunov Exponents, A Tool to Explore Complex Dynamics, 2016, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1419.37002
[19] Freire, J. G.; Gallas, J. A. C., Stern-Brocot trees in the periodicity of mixed-mode oscillations, Phys. Chem. Chem. Phys., 13, 12191-12198, 2011 · doi:10.1039/c0cp02776f
[20] Nascimento, M. A.; Gallas, J. A. C.; Varela, H., Self-organized distribution of periodicity and chaos in an electrochemical oscillator, Phys. Chem. Chem. Phys., 13, 441-446, 2011 · doi:10.1039/C0CP01038C
[21] Freire, J. G.; Pöschel, T.; Gallas, J. A. C., Stern-Brocot trees in spiking and bursting of sigmoidal maps, Europhys. Lett., 100, 48002, 2012 · doi:10.1209/0295-5075/100/48002
[22] Gallas, J. A. C., Spiking systematics in some CO \({}_2\) laser models, Adv. Atom. Mol. Opt. Phys., 65, 127-191, 2016 · doi:10.1016/bs.aamop.2016.01.001
[23] Rao, X. B.; Chu, Y. D.; Xu, L.; Chang, Y. X.; Zhang, J. G., Fractal structures in centrifugal flywheel governor system, Commun. Nonlin. Sci. Num. Simul., 50, 330-339, 2017 · Zbl 1446.70043 · doi:10.1016/j.cnsns.2017.03.016
[24] Xu, L.; Chu, Y. D.; Yang, Q., Novel dynamical scenario of the two-stage Colpitts oscillator, Chaos, Solitons Fractals, 138, 109998, 2020 · Zbl 1490.37110 · doi:10.1016/j.chaos.2020.109998
[25] Rao, X. B.; Zhao, X. P.; Gao, J. S.; Zhang, J. G., Self-organization with fast-slow time scale dynamics in a memristor-based Shinriki’s circuit, Commun. Nonlin. Sci. Num. Simul., 94, 105569, 2021 · Zbl 1528.94124 · doi:10.1016/j.cnsns.2020.105569
[26] Gallas, J. A. C.; Hauser, M. J. B.; Olsen, L. F., Complexity of a peroxidase-oxidase reaction model, Phys. Chem. Chem. Phys., 23, 1943-1955, 2021 · doi:10.1039/D0CP06153K
[27] Gallas, J. A. C., Overlapping adding-doubling spikes cascades in a semiconductor laser proxy, Brazilian J. Phys., 51, 919-926, 2021 · doi:10.1007/s13538-021-00865-z
[28] Vélez, J. A.; Bragard, J.; Pérez, L. M.; Cabanas, A. M.; Suarez, O. J.; Laroze, D.; Mancini, H. L., Periodicity characterization of the nonlinear magnetization dynamics, Chaos, 30, 093112, 2020 · doi:10.1063/5.0006018
[29] Rodrigues, C. S.; dos Santos, C. G. P.; de Miranda, C. C.; Parma, E.; Varela, H.; Nagao, R., A numerical investigation of the effect of external resistence and applied potential on the distribution of periodicity and chaos in the anodic dissolution of nickel, Phys. Chem. Chem. Phys., 22, 21823-21834, 2020 · doi:10.1039/D0CP04238B
[30] Gallas, J. A. C., Structure of the parameter space of the Hénon map, Phys. Rev. Lett., 70, 2714-2717, 1993 · doi:10.1103/PhysRevLett.70.2714
[31] Gallas, J. A. C., Dissecting shrimps: Results for some one-dimensional physical systems, Physica. A., 202, 196-223, 1994 · doi:10.1016/0378-4371(94)90174-0
[32] Zou, Y.; Thiel, M.; Romano, M. C.; Kurths, J., Shrimp structure and associated dynamics in parametrically excited oscillators, Int. J. Bif. Chaos, 16, 3567-3579, 2006 · Zbl 1117.37027 · doi:10.1142/S0218127406016987
[33] Lorenz, E. N., Compound windows of the Hénon map, Physica D, 237, 1689-1704, 2008 · Zbl 1155.37030 · doi:10.1016/j.physd.2007.11.014
[34] Bonatto, C.; Gallas, J. A. C., Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit, Phys. Rev. Lett., 101, 054101, 2008 · doi:10.1103/PhysRevLett.101.054101
[35] Façanha, W.; Oldeman, B.; Glass, L., Bifurcation structures in two-dimensional maps: The endoskeleton of shrimps, Phys. Lett. A, 377, 1264-1268, 2013 · Zbl 1290.37026 · doi:10.1016/j.physleta.2013.03.025
[36] Kvarda, P., Chaos in Hartley’s oscillator, Int. J. Bifurcation Chaos, 12, 2229-2232, 2002 · doi:10.1142/S0218127402005777
[37] Tchitnga, R.; Fotsin, H. B.; Nana, B.; Fotso, P. H. L.; Woafo, P., Hartley’s oscillator: The simplest chaotic two-component circuit, Chaos, Solitons Fractals, 45, 306-313, 2012 · doi:10.1016/j.chaos.2011.12.017
[38] Freire, J. G.; Gallas, J. A. C., Cyclic organization of stable periodic and chaotic pulsations in Hartley’s oscillator, Chaos, Solitons Fractals, 59, 129-134, 2014 · doi:10.1016/j.chaos.2013.12.007
[39] Varan, M.; Akgul, A.; Guleryuz, E.; Serbest, K., Synchronisation and circuit realisation of chaotic Hartley system, Z. Naturforschung A, 73, 521-531, 2018 · doi:10.1515/zna-2018-0027
[40] Semenov, A.; Havrilov, D.; Volovik, A.; Baraban, S.; Savytskyi, A.; Zviahin, O., Simulation of the chaotic dynamics of the deterministic chaos transistor oscillator based on the Hartley circuit, 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, 2020, IEEE · doi:10.1109/TCSET49122.2020.235384
[41] Field, R. J.; Freire, J. G.; Gallas, J. A. C., Quint points lattice in a driven Belousov-Zhabotinsky reaction model, Chaos, 31, 053124, 2021 · Zbl 1462.92060 · doi:10.1063/5.0047167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.