×

Affine homogeneous varieties and suspensions. (English) Zbl 07824473

The paper is devoted to the study of discrepancy between algebraic homogeneous spaces and algebraic varieties with transitive action of the automorphism group. For complete varieties these two classes coincide. However, in general, the second class is strictly bigger: all smooth quasi-affine toric varieties are acted on transitively by the automorphism group, but some of them are not homogeneous spaces under an algebraic group action [I. V. Arzhantsev et al., Sb. Math. 203, No. 7, 923–949 (2012; Zbl 1311.14059); translation from Mat. Sb. 203, No. 7, 3–30 (2012)]. In a previous paper [I. V. Arzhantsev et al., Proc. Steklov Inst. Math. 318, 13–25 (2022; Zbl 1506.14121); translation from Tr. Mat. Inst. Steklova 318, 17–30 (2022)], the authors raise a question whether such examples exist for affine varieties.
Here they give an affirmative answer to this question based on the construction of suspension: an affine variety \(X\) is said to be a suspension over another affine variety \(Y\) if \(X\) is defined in \(\mathbb{A}^2\times Y\) by an equation of the form \(uv=f(y)\), where \(u,v\) are the coordinates on \(\mathbb{A}^2\) and \(f\) is a non-constant regular function on \(Y\). The suspension \(X\) is smooth if and only if \(Y\) and the zero scheme of \(f\) on \(Y\) are smooth.
There is a notion of flexibility for affine varieties [I. Arzhantsev et al., Duke Math. J. 162, No. 4, 767–823 (2013; Zbl 1295.14057)]: one of equivalent definitions is that the automorphism group is transitive on the smooth locus. It is known that flexibility is inherited by suspensions [I. V. Arzhantsev et al., Sb. Math. 203, No. 7, 923–949 (2012; Zbl 1311.14059); translation from Mat. Sb. 203, No. 7, 3–30 (2012)]. Thus smooth iterated suspensions over flexible varieties are acted on transitively by the automorphism group. Taking \(Y=\mathbb{A}^{n-1}\) and a polynomial \(f\) whose prime factors are pairwise distinct and define \(m\) pairwise disjoint smooth hypersurfaces in \(\mathbb{A}^{n-1}\), one of them being a hyperplane, the authors get a smooth \(n\)-dimensional affine variety \(X\) with \(\operatorname{Pic}(X)=\mathbb{Z}^{m-1}\) such that \(\operatorname{Aut}(X)\) acts transitively on \(X\). They prove that \(\operatorname{rk}\operatorname{Pic}(X)\le\dim X\) for any affine homogeneous space \(X\), thus getting plenty of examples of affine varieties with transitive automorphism group which are not homogeneous spaces.
In particular, those (and only those) Danielewski surfaces which are suspensions over \(\mathbb{A}^1\) have transitive automorphism group. It is proved that among them only a smooth affine quadric is a homogeneous space. It is also proved that Danilov-Gizatullin surfaces which are obtained by removing an ample curve with self-intersection index \(\ge3\) from a Hirzebruch surface are not homogeneous spaces, still having the transitive automorphism group [M. H. Gizatullin, Math. USSR, Izv. 4, 787–810 (1971; Zbl 0219.14023)].

MSC:

14M17 Homogeneous spaces and generalizations
14R20 Group actions on affine varieties
14J50 Automorphisms of surfaces and higher-dimensional varieties
14L30 Group actions on varieties or schemes (quotients)

References:

[1] Arzhantsev, I., On images of affine spaces, Indag. Math. (N.S.), 34, 4, 812-819, 2023 · Zbl 1520.14092 · doi:10.1016/j.indag.2023.03.001
[2] Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox rings. In: Cambridge Studies in Adv. Math., vol. 144. Cambridge University Press, New York (2015) · Zbl 1360.14001
[3] Arzhantsev, I.; Flenner, H.; Kaliman, S.; Kutzschebauch, F.; Zaidenberg, M., Flexible varieties and automorphism groups, Duke Math. J., 162, 4, 767-823, 2013 · Zbl 1295.14057 · doi:10.1215/00127094-2080132
[4] Arzhantsev, I.; Kuyumzhiyan, K.; Zaidenberg, M., Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity, Sb. Math., 203, 7, 923-949, 2012 · Zbl 1311.14059 · doi:10.1070/SM2012v203n07ABEH004248
[5] Arzhantsev, I.; Shakhmatov, K.; Zaitseva, Y., Homogeneous algebraic varieties and transitivity degree, Proc. Steklov Inst. Math., 318, 13-25, 2022 · Zbl 1506.14121 · doi:10.1134/S0081543822040022
[6] Brion, M.: Some structure theorems for algebraic groups. In: Can, M.B. (ed) Algebraic Groups: Structure and Actions. Proceedings of Symposia in Pure Mathematics, vol. 94, pp. 53-126 (2017) · Zbl 1401.14195
[7] Brion, M.; Samuel, P.; Uma, V., Lectures on the Structure of Algebraic Groups and Geometric Applications, 2013, New Delhi: Hindustan Book Agency, New Delhi · Zbl 1326.14001 · doi:10.1007/978-93-86279-58-3
[8] Daigle, D., Locally nilpotent derivations and Danielewski surfaces, Osaka J. Math., 41, 1, 37-80, 2004 · Zbl 1078.13010
[9] Demazure, M., Sous-groupes algebriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér., 3, 507-588, 1970 · Zbl 0223.14009 · doi:10.24033/asens.1201
[10] Donzelli, F., Algebraic density property of Danilov-Gizatullin surfaces, Math. Z., 272, 3-4, 1187-1194, 2012 · Zbl 1260.32006 · doi:10.1007/s00209-012-0982-3
[11] Dubouloz, A., Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Mich. Math. J., 52, 2, 289-308, 2004 · Zbl 1072.14075 · doi:10.1307/mmj/1091112077
[12] Flenner, H.; Kaliman, S.; Zaidenberg, M., On the Danilov-Gizatullin isomorphism theorem, Enseign. Math. (2), 55, 3-4, 275-283, 2009 · Zbl 1208.14029 · doi:10.4171/lem/55-3-4
[13] Gizatullin, M., On affine surfaces that can be completed by a nonsingular rational curve, Math. USSR-Izv., 4, 4, 787-810, 1970 · Zbl 0219.14023 · doi:10.1070/IM1970v004n04ABEH000933
[14] Gizatullin, M., Quasihomogeneous affine surfaces, Math. USSR-Izv., 5, 5, 1057-1081, 1971 · Zbl 0249.14010 · doi:10.1070/IM1971v005n05ABEH001201
[15] Gizatullin, M., Affine surfaces which are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv., 5, 4, 754-769, 1971 · Zbl 0252.14006 · doi:10.1070/IM1971v005n04ABEH001113
[16] Gizatullin, M.; Danilov, V., Automorphisms of affine surfaces. II, Math. USSR-Izv., 11, 1, 51-98, 1977 · Zbl 0379.14002 · doi:10.1070/IM1977v011n01ABEH001695
[17] Grosshans, F., Algebraic Homogeneous Spaces and Invariant Theory Lect., Notes in Math, 1997, Berlin: Springer, Berlin · Zbl 0886.14020 · doi:10.1007/BFb0093525
[18] Humphreys, J.: Linear Algebraic Groups. Grad. Texts in Math., vol. 21. Springer, New York (1975) · Zbl 0325.20039
[19] Kaliman, S.; Zaidenberg, M., Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups, 4, 1, 53-95, 1999 · Zbl 0956.14041 · doi:10.1007/BF01236662
[20] Kovalenko, S., Transitivity of automorphism groups of Gizatullin surfaces, Int. Math. Res. Not. IMRN, 2015, 21, 11433-11484, 2015 · Zbl 1375.14205 · doi:10.1093/imrn/rnv025
[21] Kraft, H.: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig (1984) · Zbl 0569.14003
[22] Kuyumzhiyan, K.; Mangolte, F., Infinitely transitive actions on real affine suspensions, J. Pure Appl. Algebra, 216, 10, 2106-2112, 2012 · Zbl 1294.14020 · doi:10.1016/j.jpaa.2012.01.016
[23] Makar-Limanov, L., On groups of automorphisms of a class of surfaces, Israel J. Math., 69, 250-256, 1990 · Zbl 0711.14022 · doi:10.1007/BF02937308
[24] Makar-Limanov, L., On the group of automorphisms of a surface \(x^ny = P(z)\), Israel J. Math., 121, 113-123, 2001 · Zbl 0980.14030 · doi:10.1007/BF02802499
[25] Nagata, M., Note on orbit spaces, Osaka Math. J., 14, 1, 21-31, 1962 · Zbl 0103.38303
[26] Onishchik, A., Vinberg, E.: Lie Groups and Algebraic Groups. Springer Series in Soviet Mathematics. Springer, Berlin (1990) · Zbl 0722.22004
[27] Popov, V., Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv., 7, 5, 1039-1056, 1973 · Zbl 0295.14025 · doi:10.1070/IM1973v007n05ABEH001990
[28] Popov, V., Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR-Izv., 8, 2, 301-327, 1974 · Zbl 0301.14018 · doi:10.1070/IM1974v008n02ABEH002107
[29] Popov, V.; Vinberg, E.; Parshin, AN; Shafarevich, IR, Invariant theory, Algebraic Geometry IV, 1994, Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York
[30] Shafarevich, I.: Basic Algebraic Geometry 1. Springer, Berlin, Heidelberg (2013) · Zbl 1273.14004
[31] Timashev, D.: Homogeneous Spaces and Equivariant Embeddings. Encyclopaedia Math. Sciences, vol. 138. Springer, Berlin, Heidelberg (2011) · Zbl 1237.14057
[32] Vakil, R.: The Rising sea: foundations of algebraic geometry notes (2023). http://math.stanford.edu/ vakil/216blog/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.