×

\( \imath\)Hall algebras of weighted projective lines and quantum symmetric pairs. (English) Zbl 07819594

Summary: The \(\imath\)Hall algebra of a weighted projective line is defined to be the semi-derived Ringel-Hall algebra of the category of 1-periodic complexes of coherent sheaves on the weighted projective line over a finite field. We show that this Hall algebra provides a realization of the \(\imath\)quantum loop algebra, which is a generalization of the \(\imath\)quantum group arising from the quantum symmetric pair of split affine type ADE in its Drinfeld type presentation. The \(\imath\)Hall algebra of the \(\imath\)quiver algebra of split affine type A was known earlier to realize the same algebra in its Serre presentation. We then establish a derived equivalence which induces an isomorphism of these two \(\imath\)Hall algebras, explaining the isomorphism of the \(\imath\)quantum group of split affine type A under the two presentations.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
14A22 Noncommutative algebraic geometry
16E60 Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc.
18G80 Derived categories, triangulated categories

References:

[1] Balagovi\'{c}, Martina, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math., 299-353, 2019 · Zbl 1425.81058 · doi:10.1515/crelle-2016-0012
[2] Bao, Huanchen, A new approach to Kazhdan-Lusztig theory of type \(B\) via quantum symmetric pairs, Ast\'{e}risque, vii+134 pp., 2018 · Zbl 1411.17001
[3] Bao, Huanchen, Canonical bases arising from quantum symmetric pairs, Invent. Math., 1099-1177, 2018 · Zbl 1416.17001 · doi:10.1007/s00222-018-0801-5
[4] Baseilhac, Pascal, Braid group action and root vectors for the \(q\)-Onsager algebra, Transform. Groups, 363-389, 2020 · Zbl 1439.81058 · doi:10.1007/s00031-020-09555-7
[5] Baumann, Pierre, The Hall algebra of the category of coherent sheaves on the projective line, J. Reine Angew. Math., 207-233, 2001 · Zbl 0967.18005 · doi:10.1515/crll.2001.031
[6] Beck, Jonathan, Braid group action and quantum affine algebras, Comm. Math. Phys., 555-568, 1994 · Zbl 0807.17013
[7] Bridgeland, Tom, Quantum groups via Hall algebras of complexes, Ann. of Math. (2), 739-759, 2013 · Zbl 1268.16017 · doi:10.4007/annals.2013.177.2.9
[8] Burban, Igor, On the Hall algebra of an elliptic curve, I, Duke Math. J., 1171-1231, 2012 · Zbl 1286.16029 · doi:10.1215/00127094-1593263
[9] Burban, Igor, Two descriptions of the quantum affine algebra \(U_v(\widehat{\mathfrak{sl}}_2)\) via Hall algebra approach, Glasg. Math. J., 283-307, 2012 · Zbl 1247.17010 · doi:10.1017/S0017089511000607
[10] Burban, Igor, The composition Hall algebra of a weighted projective line, J. Reine Angew. Math., 75-124, 2013 · Zbl 1325.14031 · doi:10.1515/crelle.2012.023
[11] Cramer, Tim, Double Hall algebras and derived equivalences, Adv. Math., 1097-1120, 2010 · Zbl 1208.16016 · doi:10.1016/j.aim.2009.12.021
[12] Damiani, Ilaria, From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity, Publ. Res. Inst. Math. Sci., 131-171, 2015 · Zbl 1394.17036 · doi:10.4171/PRIMS/150
[13] Dou, Rujing, The Hall algebra approach to Drinfeld’s presentation of quantum loop algebras, Adv. Math., 2593-2625, 2012 · Zbl 1262.14039 · doi:10.1016/j.aim.2012.07.026
[14] Drinfel\cprime d, V. G., A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl.. Dokl. Akad. Nauk SSSR, 13-17, 1987
[15] Garland, Howard, The arithmetic theory of loop groups, Inst. Hautes \'{E}tudes Sci. Publ. Math., 5-136, 1980 · Zbl 0475.17004
[16] Geigle, Werner, Singularities, representation of algebras, and vector bundles. A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Lecture Notes in Math., 265-297, 1985, Springer, Berlin · Zbl 0651.14006 · doi:10.1007/BFb0078849
[17] Gorsky, Mikhail, Semi-derived and derived Hall algebras for stable categories, Int. Math. Res. Not. IMRN, 138-159, 2018 · Zbl 1411.18020 · doi:10.1093/imrn/rnv325
[18] Green, James A., Hall algebras, hereditary algebras and quantum groups, Invent. Math., 361-377, 1995 · Zbl 0836.16021 · doi:10.1007/BF01241133
[19] Kapranov, M. M., Eisenstein series and quantum affine algebras, J. Math. Sci. (New York), 1311-1360, 1997 · Zbl 0929.11015 · doi:10.1007/BF02399194
[20] Kolb, Stefan, Quantum symmetric Kac-Moody pairs, Adv. Math., 395-469, 2014 · Zbl 1300.17011 · doi:10.1016/j.aim.2014.08.010
[21] Kolb, Stefan, Braid group actions on coideal subalgebras of quantized enveloping algebras, J. Algebra, 395-416, 2011 · Zbl 1266.17011 · doi:10.1016/j.jalgebra.2011.04.001
[22] Keller, Bernhard, On triangulated orbit categories, Doc. Math., 551-581, 2005 · Zbl 1086.18006
[23] Letzter, Gail, Symmetric pairs for quantized enveloping algebras, J. Algebra, 729-767, 1999 · Zbl 0956.17007 · doi:10.1006/jabr.1999.8015
[24] Lu, Ming, Semi-derived Ringel-Hall algebras and Drinfeld double, Adv. Math., Paper No. 107668, 72 pp., 2021 · Zbl 1460.18007 · doi:10.1016/j.aim.2021.107668
[25] Lu, Ming, \( \imath\) Hall algebra of the projective line and \(q\)-Onsager algebra, Trans. Amer. Math. Soc., 1475-1505, 2023 · Zbl 1507.17032 · doi:10.1090/tran/8798
[26] Lu, Ming, Hall algebras and quantum symmetric pairs II: Reflection functors, Comm. Math. Phys., 799-855, 2021 · Zbl 1479.17029 · doi:10.1007/s00220-021-03965-8
[27] Lu, Ming, A Drinfeld type presentation of affine \(\imath\) quantum groups I: Split ADE type, Adv. Math., Paper No. 108111, 46 pp., 2021 · Zbl 1514.17017 · doi:10.1016/j.aim.2021.108111
[28] Lu, Ming, Hall algebras and quantum symmetric pairs I: Foundations, Proc. Lond. Math. Soc. (3), 1-82, 2022 · Zbl 1532.17018 · doi:10.1112/plms.12423
[29] Lu, Ming, Braid group symmetries on quasi-split \(\imath\) quantum groups via \(\imath\) Hall algebras, Selecta Math. (N.S.), Paper No. 84, 64 pp., 2022 · Zbl 1522.17022 · doi:10.1007/s00029-022-00800-3
[30] Lu, Ming, Hall algebras and quantum symmetric pairs of Kac-Moody type, Adv. Math., Paper No. 109215, 56 pp., 2023 · Zbl 1533.17020 · doi:10.1016/j.aim.2023.109215
[31] Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 447-498, 1990 · Zbl 0703.17008 · doi:10.2307/1990961
[32] Ringel, Claus Michael, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, xiii+376 pp., 1984, Springer-Verlag, Berlin · Zbl 0546.16013 · doi:10.1007/BFb0072870
[33] Ringel, Claus Michael, Hall algebras and quantum groups, Invent. Math., 583-591, 1990 · Zbl 0735.16009 · doi:10.1007/BF01231516
[34] Schiffmann, Olivier, Noncommutative projective curves and quantum loop algebras, Duke Math. J., 113-168, 2004 · Zbl 1054.17021 · doi:10.1215/S0012-7094-04-12114-1
[35] Schiffmann, Olivier, Geometric methods in representation theory. II. Lectures on Hall algebras, S\'{e}min. Congr., 1-141, 2012, Soc. Math. France, Paris
[36] Stai, Torkil, The triangulated hull of periodic complexes, Math. Res. Lett., 199-236, 2018 · Zbl 1427.16005 · doi:10.4310/mrl.2018.v25.n1.a9
[37] Wang, Weiqiang, ICM-International Congress of Mathematicians. Vol. IV. Sections 5-8. Quantum symmetric pairs, 3080-3103, [2023] ©2023, EMS Press, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.