×

Extensions of MacMahon’s sums of divisors. (English) Zbl 07809832

In the paper under review, the authors consider the following generating function \[ V_t(q)=\sum_{n\geq 0} M(t,n)q^n:=\sum_{1\leq k_1\leq k_2\leq \cdots \leq k_t}\frac{q^{k_1+k_2+\cdots+k_t}}{(1-q^{k_1})^2 (1-q^{k_2})^2\cdots (1-q^{k_t})^2}. \] Note that when \(t = 1\), this again is the generating function \(\sum_{n\geq 0} \sigma_1(n)q^n\) for the sum of the divisors of \(n\). The authors reveal a rich arithmetic aspect of these generalized divisor functions. For instance, it was proven that \[ M(2, 5n + 1) \equiv 0\pmod 5 \] and many other similar identities in Theorem 8.1. In addition to those surprising congruences, the authors also obtained a novel identity among these generalized divisor sums. Namely, \[ V_t(q)=\sum_{1\leq k_1\leq k_{2}\leq \cdots \leq k_{2t-1}}\frac{k_1q^{k_1+k_2+\cdots+k_{2t-1}}}{(1-q^{k_1}) (1-q^{k_2})\cdots (1-q^{k_{2t-1}})}. \] The main approach to prove the above identity involves rational function approximation to MacMahon-type generating functions. One such example involves multiple \(q\)-harmonic sums \[ \sum\limits_{k=1}^n\frac{(-1)^{k-1}\begin{bmatrix} n \\ k\end{bmatrix}_q(1+q^k)q^{\binom{k}{2}+tk}}{[k]_q^{2t}\begin{bmatrix} n+k\\ k\end{bmatrix}_q} =\sum\limits_{1\leq k_1\leq\cdots\leq k_{2t}\leq n}\frac{q^{n+k_1+k_3\cdots +k_{2t-1}}+q^{k_2+k_4+\cdots +k_{2t}}}{[n+k_1]_q[k_2]_q\cdots [k_{2t}]_q}. \]

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
11P83 Partitions; congruences and congruential restrictions
11F37 Forms of half-integer weight; nonholomorphic modular forms

References:

[1] Andrews, GE; Crippa, D.; Simon, K., \(q\)-series arising from the study of random graphs, SIAM J. Discrete Math., 10, 1, 41-56 (1997) · Zbl 0871.05049 · doi:10.1137/S0895480194262497
[2] Andrews, GE; Rose, SCF, MacMahon’s sum-of-divisors functions, chebyshev polynomials, and quasi-modular forms, J. Reine Angew. Math., 676, 97-103 (2013) · Zbl 1337.11002
[3] Bachmann, H., The algebra of bi-brackets and regularized multiple Eisenstein series, J. Number Theory, 200, 260-294 (2019) · Zbl 1443.11174 · doi:10.1016/j.jnt.2018.12.006
[4] Bachmann, H.; Kühn, U., The algebra of generating functions for multiple divisor sums and applications to multiple zeta values, Ramanujan J., 40, 3, 605-648 (2016) · Zbl 1412.11101 · doi:10.1007/s11139-015-9707-7
[5] Dilcher, K., Some \(q\)-series identities related to divisor function, Discrete Math., 145, 83-93 (1995) · Zbl 0834.05005 · doi:10.1016/0012-365X(95)00092-B
[6] Hessami Pilehrood, Kh; HessamiPilehrood, T., On \(q\)-analogues of two-one formulas for multiple harmonic sums and multiple zeta star values, Monatsh. Math., 176, 275-291 (2015) · Zbl 1391.11103 · doi:10.1007/s00605-014-0715-2
[7] Hessami Pilehrood, Kh; HessamiPilehrood, T.; Tauraso, R., New properties of multiple harmonic sums modulo \(p\) and \(p\)-analogues of Leshchiner’s series, Trans. Am. Math. Soc., 366, 3131-3159 (2014) · Zbl 1308.11018 · doi:10.1090/S0002-9947-2013-05980-6
[8] Jacobi, C. G. J.: Fundamenta Nova Theoriae Functionum Ellipticarum, first published in Königsberg: Gebrüder Borntraeger (1829)
[9] Kaneko, M.; Zagier, D., A generalized Jacobi theta function and quasi-modular forms, the moduli space of curves, Texas Island Progr. Math., 1995, 165-172 (1994) · Zbl 0892.11015
[10] MacMahon, PA, Divisors of Numbers and their Continuations in the Theory of Partitions, Proc. London Math. Soc., 2, 19, 75-113 (1920) · JFM 47.0117.01
[11] Mansour, T.; Shattuck, M.; Song, C., A \(q\)-analog of a general rational sum identity, Afr. Mat., 24, 297-303 (2013) · Zbl 1276.05009 · doi:10.1007/s13370-011-0061-7
[12] Merca, M., A special case of the generalized girard-waring formula, J. Integer Sequ., 15, 12-57 (2012) · Zbl 1292.05261
[13] Ohno, Y.; Zudilin, W., Zeta stars, Commun. Number Theory Phys., 2, 2, 325-347 (2008) · Zbl 1228.11132 · doi:10.4310/CNTP.2008.v2.n2.a2
[14] Ramanujan, S., On certain arithmetical functions, Trans. Camb. Phil. Soc., 22, 159-184 (1916) · Zbl 07426016
[15] Rose, SCF, Quasi-modularity of generalized sum-of-divisors functions, Res. Number Theory, 1, 18, 11 (2015) · Zbl 1379.11046
[16] Stanley, R., Enumerative Combinatorics (1999), New York/Cambridge: Cambridge University Press, New York/Cambridge · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[17] Sturm, J., On the congruence of modular forms, Lect. Notes Math., 1240, 275-280 (1984) · Zbl 0615.10035 · doi:10.1007/BFb0072985
[18] Xu, A., On a general \(q\)-identity, Electron. J. Comb., 21, P2.28 (2014) · Zbl 1300.05042 · doi:10.37236/3962
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.