×

Discrete multilinear maximal functions and number theory. (English) Zbl 07783564

Many multilinear discrete operators are primed for pointwise decomposition; such decompositions give structural information but also an essentially optimal range of bounds. In this paper, the authors study the (continuous) slicing method of E. Jeong and S. Lee [J. Funct. Anal. 279, No. 7, Article ID 108629, 28 p. (2020; Zbl 1445.42006)] – which when debuted instantly gave sharp multilinear operator bounds – in the discrete setting. Via several examples, number theoretic connections, pointed commentary, and a unified theory, this useful technique maybe lead to further applications. This work generalizes, and was inspired by, the author’s work with Palsson on a special case.

MSC:

11K70 Harmonic analysis and almost periodicity in probabilistic number theory
11P32 Goldbach-type theorems; other additive questions involving primes
42B25 Maximal functions, Littlewood-Paley theory

Citations:

Zbl 1445.42006

References:

[1] T. Anderson, B. Cook, K. Hughes, and A. Kumchev, \( Improved l^p\) boundedness for integral k-spherical maximal functions, Discrete Anal. 2018. Paper No. 10, 18. Digital Object Identifier: 10.19086/da.3675 Google Scholar: Lookup Link MathSciNet: MR3819049 · Zbl 1404.42034 · doi:10.19086/da.3675
[2] T. Anderson, B. Cook, K. Hughes, and A. Kumchev, On the ergodic Waring-Goldbach Problem, J. Funct. Anal. 282 (2022), no. 6, Paper No. 109334, 39. Digital Object Identifier: 10.1016/j.jfa.2021.109334 Google Scholar: Lookup Link zbMATH: 1489.37008 MathSciNet: MR4354856 · Zbl 1489.37008 · doi:10.1016/j.jfa.2021.109334
[3] T. C. Anderson and E. A. Palsson, Bounds for discrete multilinear spherical maximal functions, Bull. Lond. Math. Soc. 53 (2021), no. 3, 855-860. Digital Object Identifier: 10.1112/blms.12465 Google Scholar: Lookup Link MathSciNet: MR4275094 · Zbl 1503.42016 · doi:10.1112/blms.12465
[4] T. Anderson and E. Palsson, Bounds for discrete multilinear spherical maximal functions in higher dimensions, Collect. Math. 73 (2022), no. 1, 75-87. Digital Object Identifier: 10.1007/s13348-020-00308-z Google Scholar: Lookup Link MathSciNet: MR4358247 · Zbl 1487.42046 · doi:10.1007/s13348-020-00308-z
[5] J. Barrionuevo, L. Grafakos, D. He, P. Honzík, and L. Oliveira, Bilinear spherical maximal function, Math. Res. Lett. 25 (2018), no. 5, 1369-1388. Digital Object Identifier: 10.4310/MRL.2018.v25.n5.a1 Google Scholar: Lookup Link zbMATH: 1407.42007 MathSciNet: MR3917731 · Zbl 1407.42007 · doi:10.4310/MRL.2018.v25.n5.a1
[6] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. Digital Object Identifier: 10.1007/BF02792533 Google Scholar: Lookup Link zbMATH: 0626.42012 MathSciNet: MR0874045 · Zbl 0626.42012 · doi:10.1007/BF02792533
[7] Buttcane, Jack, A note on the Waring-Goldbach problem, J. Number Theory 130 (2010), no. 1, 116-127. Digital Object Identifier: 10.1016/j.jnt.2009.07.006 Google Scholar: Lookup Link zbMATH: 1262.11088 MathSciNet: MR2569845 · Zbl 1262.11088 · doi:10.1016/j.jnt.2009.07.006
[8] G. Dosidis, Multilinear spherical maximal function. Proc. Amer. Math. Soc. 149 (2021), no. 4, 1471-1480. Digital Object Identifier: 10.1090/proc/15361 Google Scholar: Lookup Link zbMATH: 1464.42012 MathSciNet: MR4242305 · Zbl 1464.42012 · doi:10.1090/proc/15361
[9] D. Geba, A. Greenleaf, A. Iosevich, E. Palsson, and E. Sawyer, Restricted convolution inequalities, multilinear operators and applications, Math. Res. Lett. 20 (2013), no. 4, 675-694. Digital Object Identifier: 10.4310/MRL.2013.v20.n4.a6 Google Scholar: Lookup Link MathSciNet: MR3188026 · Zbl 1287.42008 · doi:10.4310/MRL.2013.v20.n4.a6
[10] Y. Heo, S. Hong, and C. W. Yang, Improved bounds for the bilinear spherical maximal operators, Math. Res. Lett. 27 (2020), no. 2, 397-434. Digital Object Identifier: 10.4310/mrl.2020.v27.n2.a4 Google Scholar: Lookup Link MathSciNet: MR4117081 · Zbl 1442.42047 · doi:10.4310/mrl.2020.v27.n2.a4
[11] L. K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monogr. 13, Amer. Math. Soc., Providence, RI, 1965. MathSciNet: MR0194404 · Zbl 0192.39304
[12] K. Hughes, Maximal functions and ergodic averages related to Waring’s problem, Israel J. Math. 217 (2017), no. 1, 17-55. Digital Object Identifier: 10.1007/s11856-017-1437-7 Google Scholar: Lookup Link MathSciNet: MR3625103 · Zbl 1362.42043 · doi:10.1007/s11856-017-1437-7
[13] A. D. Ionescu, An endpoint estimate for the discrete spherical maximal functions, Proc. Am. Math. Soc. 132 (2004), no. 5, 1411-1417. Digital Object Identifier: 10.1090/S0002-9939-03-07207-1 Google Scholar: Lookup Link zbMATH: 1076.42014 MathSciNet: MR2053347 · Zbl 1076.42014 · doi:10.1090/S0002-9939-03-07207-1
[14] E. Jeong and S. Lee, Maximal estimates for the bilinear spherical averages and the bilinear Bochner-Riesz operators, J. Funct. Anal. 279 (2020), no. 7, Paper No. 108629, 29. Digital Object Identifier: 10.1016/j.jfa.2020.108629 Google Scholar: Lookup Link MathSciNet: MR4103874 · Zbl 1445.42006 · doi:10.1016/j.jfa.2020.108629
[15] A. V. Kumchev, On the Waring-Goldbach problem: Exceptional sets for sums of cubes and higher powers, Canad. J. Math. 57 (2005), no. 2, 298-327. Digital Object Identifier: 10.4153/CJM-2005-013-3 Google Scholar: Lookup Link MathSciNet: MR2124919 · Zbl 1080.11070 · doi:10.4153/CJM-2005-013-3
[16] A. V. Kumchev and T. D. Wooley, On the Waring-Goldbach problem for eighth and higher powers, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 811-824. Digital Object Identifier: 10.1112/jlms/jdw013 Google Scholar: Lookup Link zbMATH: 1358.11117 MathSciNet: MR3509965 · Zbl 1358.11117 · doi:10.1112/jlms/jdw013
[17] A. V. Kumchev and T. D. Wooley, On the Waring-Goldbach problem for seventh and higher powers, Monatsh. Math. 183 (2017), no. 2, 303- Digital Object Identifier: 10.1007/s00605-016-0936-7 Google Scholar: Lookup Link zbMATH: 1381.11099 MathSciNet: MR3641929 · Zbl 1381.11099 · doi:10.1007/s00605-016-0936-7
[18] A. Magyar, E. M. Stein, and S. Wainger, Discrete analogues in harmonic analysis: Spherical averages, Ann. of Math. (2) 155 (2002), no. 1, 189-208. Digital Object Identifier: 10.2307/3062154 Google Scholar: Lookup Link zbMATH: 1036.42018 MathSciNet: MR1888798 · Zbl 1036.42018 · doi:10.2307/3062154
[19] M. Mirek, T. Szarek, and B. Wrobel, Dimension-free estimates for the discrete spherical maximal functions, preprint, arXiv:2012.14509 [math.CA] Digital Object Identifier: 10.48550/arXiv.2012.14509 Google Scholar: Lookup Link · doi:10.48550/arXiv.2012.14509
[20] M. Mirek and B. Trojan, Cotlar’s ergodic theorem along the prime numbers, J. Fourier Anal. Appl. 21 (2015), no. 4, 822-848. Digital Object Identifier: 10.1007/s00041-015-9388-z Google Scholar: Lookup Link zbMATH: 1336.37010 MathSciNet: MR3370012 · Zbl 1336.37010 · doi:10.1007/s00041-015-9388-z
[21] D. Oberlin, Multilinear convolutions defined by measures on spheres, Trans. Amer. Math. Soc. 310 (1988), no. 2, 821-835. Digital Object Identifier: 10.2307/2000993 Google Scholar: Lookup Link zbMATH: 0713.42012 MathSciNet: MR0943305 · Zbl 0713.42012 · doi:10.2307/2000993
[22] L. B. Pierce, Discrete fractional radon transforms and quadratic forms, Duke Math. J. 161 (2012), no. 1, 69-106. Digital Object Identifier: 10.1215/00127094-1507288 Google Scholar: Lookup Link zbMATH: 1246.44002 MathSciNet: MR2872554 · Zbl 1246.44002 · doi:10.1215/00127094-1507288
[23] E. M. Stein, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174-2175. Digital Object Identifier: 10.1073/pnas.73.7.2174 Google Scholar: Lookup Link zbMATH: 0332.42018 MathSciNet: MR0420116 · Zbl 0332.42018 · doi:10.1073/pnas.73.7.2174
[24] B. Trojan, Endpoint estimates for the maximal function over prime numbers, J. Fourier Anal. Appl. 25 (2019), no. 6, 3123-3153. Digital Object Identifier: 10.1007/s00041-019-09695-9 Google Scholar: Lookup Link zbMATH: 1427.37007 MathSciNet: MR4029173 · Zbl 1427.37007 · doi:10.1007/s00041-019-09695-9
[25] M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), no. 3, 315-336 (1989). Digital Object Identifier: 10.1007/BF02882425 Google Scholar: Lookup Link MathSciNet: MR0995574 · Zbl 0695.28007 · doi:10.1007/BF02882425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.