Skip to main content
Log in

Bounds for discrete multilinear spherical maximal functions

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We define a discrete version of the bilinear spherical maximal function, and show bilinear \(l^{p}(\mathbb {Z}^d)\times l^{q}(\mathbb {Z}^d) \rightarrow l^{r}(\mathbb {Z}^d)\) bounds for \(d \ge 3\), \(\frac{1}{p} + \frac{1}{q} \ge \frac{1}{r}\), \(r>\frac{d}{d-2}\) and \(p,q\ge 1\). Due to interpolation, the key estimate is an \(l^{p}(\mathbb {Z}^d)\times l^{\infty }(\mathbb {Z}^d) \rightarrow l^{p}(\mathbb {Z}^d)\) bound, which holds when \(d \ge 3\), \(p>\frac{d}{d-2}\). A key feature of our argument is the use of the circle method which allows us to decouple the dimension from the number of functions compared to the work of Cook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, T., Cook, B., Hughes, K., Kumchev, A.: On the Ergodic Waring–Goldbach Problem. Submitted. Preprint on https://arxiv.org/abs/1703.02713

  2. Anderson, T., Cook, B., Hughes, K., Kumchev, A.: Improved $l^p$ boundedness for integral k-spherical maximal functions. Discrete Anal. Paper No. 10, pp. 18 (2018)

  3. Anderson, T., Palsson, E.: Bounds for Discrete Multilinear Spherical Maximal Functions in Higher Dimensions. Submitted. Preprint on https://arxiv.org/abs/1911.00464

  4. Barrionuevo, J., Grafakos, L., He, D., Honzík, P., Oliveira, L.: Bilinear spherical maximal function. Math. Res. Lett. 25(5), 1369–1388 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)

    Article  MathSciNet  Google Scholar 

  6. Cook, B.: Discrete multilinear spherical averages. Canad. Math. Bull. 62(2), 243–246 (2019

  7. Geba, D., Greenleaf, A., Iosevich, A., Palsson, E., Sawyer, E.: Restricted convolution inequalities, multilinear operators and applications. Math. Res. Lett. 20(4), 675–694 (2013)

    Article  MathSciNet  Google Scholar 

  8. Grafakos, L., He, D., Honzík, P.: Maximal operators associated with bilinear multipliers of limited decay. J. Anal. Math. accepted for publication (2018)

  9. Heo, Y., Hong, S., Yang, C.W.: Improved bounds for the bilinear spherical maximal operators. Math. Res. Lett. 27(2), 397–434 (2020)

  10. Hughes, K.: Maximal functions and ergodic averages related to Waring’s problem. Israel J. Math. 217(1), 17–55 (2017)

    Article  MathSciNet  Google Scholar 

  11. Jeong, Lee: Maximal Estimates for the Bilinear Spherical Averages and the Bilinear Bochner–Riesz Operators. J. Funct. Anal. 279(7), 108629, 29 pp (2020)

  12. Magyar, A.: $L^p$-bounds for spherical maximal operators on $\mathbb{Z}^n$. Rev. Mat. Iberoam. 13(2), 307–317 (1997)

    Article  MathSciNet  Google Scholar 

  13. Magyar, A.: Diophantine equations and ergodic theorems. Am. J. Math. 124(5), 921–953 (2002)

    Article  MathSciNet  Google Scholar 

  14. Magyar, A., Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis: spherical averages. Ann. Math. (2) 155(1), 189–208 (2002)

    Article  MathSciNet  Google Scholar 

  15. Oberlin, D.: Multilinear convolutions defined by measures on spheres. Trans. Am. Math. Soc. 310(2), 821–835 (1988)

    Article  MathSciNet  Google Scholar��

  16. Rubio de Francia, J.L.: Maximal functions and Fourier transforms. Duke Math. J. 53(2), 395–404 (1986)

    Article  MathSciNet  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  18. Stein, E.M.: Maximal functions: spherical means. Proc. Nat. Acad. Sci. U.S.A. 73, 2174–2175 (1976)

    Article  MathSciNet  Google Scholar 

  19. Vaughan, R.C.: The Hardy–Littlewood Method, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

Download references

Acknowledgements

T. C. Anderson was supported in part by NSF DMS-1502464 and NSF DMS-195440. E. A. Palsson was supported in part by Simons Foundation Grant #360560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa C. Anderson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, T.C., Palsson, E.A. Bounds for discrete multilinear spherical maximal functions. Collect. Math. 73, 75–87 (2022). https://doi.org/10.1007/s13348-020-00308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-020-00308-z

Navigation