×

Curvature inheritance symmetry in Riemannian spaces with applications to fluid space times. (English) Zbl 0767.53054

Generalizing the notion of curvature collineations a symmetry called “curvature inheritance” (CI) is introduced, defined by a vector field \(\xi\), satisfying \(L_ \xi R^ a_{bcd}=2\alpha R^ a_{bcd}\), where \(R^ a_{bcd}\) is the Riemann curvature tensor of a Riemannian space \(V_ n\), \(L_ \xi\) denotes the Lie derivative with respect to \(\xi\), and \(\alpha\neq 0\) is a scalar function. The connection between a CI and physically interesting conformal motions in a \(V_ 4\) is established, and it is shown that a CI, which is also a conformal Killing vector, can generate new and physically relevant solutions of Einstein’s field equations for a variety of fluid space times.

MSC:

53Z05 Applications of differential geometry to physics
83C40 Gravitational energy and conservation laws; groups of motions
Full Text: DOI

References:

[1] DOI: 10.1063/1.1664886 · Zbl 0176.19402 · doi:10.1063/1.1664886
[2] DOI: 10.1063/1.1665215 · doi:10.1063/1.1665215
[3] Katzin G. H., Tensor, New Series 21 pp 51– (1970)
[4] Katzin G. H., Tensor, New Series 21 pp 319– (1970)
[5] DOI: 10.1063/1.1665297 · Zbl 0194.58604 · doi:10.1063/1.1665297
[6] Katzin G. H., Tensor, New Series 22 pp 64– (1971)
[7] Katzin G. H., Colloq. Math. 26 pp 21– (1972)
[8] DOI: 10.1088/0305-4470/14/9/027 · Zbl 0469.53026 · doi:10.1088/0305-4470/14/9/027
[9] DOI: 10.1103/PhysRev.113.934 · Zbl 0086.22103 · doi:10.1103/PhysRev.113.934
[10] DOI: 10.1007/BF00759239 · Zbl 0417.53040 · doi:10.1007/BF00759239
[11] Oliver D. R., Ann. Inst. Henri Poincare 30 pp 339– (1979)
[12] DOI: 10.1007/BF00756893 · Zbl 0331.53016 · doi:10.1007/BF00756893
[13] DOI: 10.1063/1.528668 · Zbl 0708.76150 · doi:10.1063/1.528668
[14] DOI: 10.1063/1.528083 · Zbl 0661.53017 · doi:10.1063/1.528083
[15] DOI: 10.1088/0264-9381/3/5/027 · Zbl 0596.53021 · doi:10.1088/0264-9381/3/5/027
[16] DOI: 10.1007/BF01645943 · doi:10.1007/BF01645943
[17] DOI: 10.1063/1.528492 · Zbl 0697.53069 · doi:10.1063/1.528492
[18] DOI: 10.1063/1.529263 · Zbl 0733.53041 · doi:10.1063/1.529263
[19] DOI: 10.1063/1.527225 · Zbl 0609.53031 · doi:10.1063/1.527225
[20] DOI: 10.1007/BF01199420 · JFM 46.1301.01 · doi:10.1007/BF01199420
[21] DOI: 10.1063/1.525852 · Zbl 0539.76127 · doi:10.1063/1.525852
[22] DOI: 10.1063/1.526714 · Zbl 0587.53062 · doi:10.1063/1.526714
[23] DOI: 10.1063/1.1664720 · doi:10.1063/1.1664720
[24] DOI: 10.1063/1.528311 · Zbl 0675.76123 · doi:10.1063/1.528311
[25] Gidas B., Princeton U.P. 102 pp 423– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.