×

Evaluation of optimization methods for machining economics models. (English) Zbl 0759.90038

Summary: In machining operations it is desirable to operate under optimal machining conditions. The optimal cutting conditions are obtained by solving machining optimization models. The formulated machining models are non-convex nonlinear programs of complex nature. This paper compares the performances and the utilities of six algorithms to identify the most suitable one(s) for solving the machining models. The algorithms are evaluated empirically with respect to their reliability, precision, convergence, sensitivity to input vector and their preparational effort. The generalized reduced gradient method implemented as in the commercial code GINO (Generalized Interactive Nonlinear Optimizer) of Scientific Press (Redwood, CA) is found to be the most suitable for solving machining optimization models.

MSC:

90B30 Production models
90C90 Applications of mathematical programming
90-08 Computational methods for problems pertaining to operations research and mathematical programming
90C30 Nonlinear programming
Full Text: DOI

References:

[1] Iwata, K.; Murotsu, Y.; Iwatsubo, T.; Fuju, S., A probablistic approach to the determination of the optimum cutting conditions, J. Engng Indust. Trans. ASME, Ser. B, 94, 1099-1107 (1972)
[2] Shuaib, A. N.; Duffuaa, S. O., A methodology for multipass machining optimization, Arab. J. Sci. Engng, Spec. Iss. Optimiz. Theory Engng Applic., 15, 743-749 (1990) · Zbl 0709.90717
[3] Iwata, K.; Murotsu, Y.; Oba, F., Optimization of cutting conditions for multi-pass operations considering probablistic nature in machining processes, J. Engng Indust. Trans. ASME, Ser. B, 210-217 (1977)
[4] S. K. Hati and S. S. Rao, Determination of machining conditions probablistic and deterministic approaches, J. Engng Indust. Trans. ASME.; S. K. Hati and S. S. Rao, Determination of machining conditions probablistic and deterministic approaches, J. Engng Indust. Trans. ASME.
[5] Petropoulos, P., Optimal selection of machining rate variables by geometric programming, Int. J. Prod. Res., 11, 305-314 (1973)
[6] Ermer, D. S., Optimization of the constrained machining economics problem by geometric programming, Trans. ASME, 93, 1067-1072 (1971)
[7] Ermer, D. S.; Kromodihardjo, S., Optimization of multipass turning with constraints, J. Engng Indust. Trans. ASME, 103, 462-468 (1981)
[8] Okushima, K.; Hitomi, K., A study of economical machining—an analysis of the maximum profit cutting speed, Int. J. Prod. Res., 1, 73-78 (1964)
[9] Wu, S. M.; Ermer, D. S., Maximum profit as the criterion in the determination of the optimum cutting conditions, J. Engng Indust. Trans. ASME, 88, 435-442 (1966)
[10] Yellowley, I., A fundamental examination of the economics of the two pass turning operation, Int. J. Prod. Res., 18, 617-626 (1978)
[11] Armarego, E. J.A.; Russell, J. K., Maximum profit rate as a criterion for the selection of machining conditions, Int. J. Multi-Tool Res., 6, 15-23 (1966)
[12] Walvekar, A. G.; Lambert, B. K., An application of geometric programming to machining variable selection, Int. J. Prod. Res., 8, 241-245 (1969)
[13] Lambert, B. K.; Walvekar, A. G., Optimization of multi-pass machining operations, Int. J. Prod. Res., 16, 259-265 (1978)
[14] Unklesbay, K.; Creighton, D. L., The optimization of multi-pass machining processes, Engng Optimiz., 3, 229-238 (1978)
[15] Davis, R. P.; Wysk, R. A.; Agee, M. H.; Kimbler, D. L., Optimizing machining parameters in a framework for adaptive computer control, Computers Indust. Engng, 4, 143-151 (1980)
[16] Kimbler, D. L.; Wysk, R. A.; Davis, R. P., Alternative approaches to the machining parameter optimization problem, Computers Indust. Engng, 21, 195-202 (1982)
[17] Sandgren, E.; Ragsdell, K. M., The utility of non-linear programming algorithms—a comparative study—Part I, Trans. ASME, 102, 171-177 (1980)
[18] Sandgren, E.; Ragsdell, K. M., The utility of non-linear programming algorithms—a comparative study—Part II, J. Mech. Des., 102, 547-551 (1980)
[19] Abuelnaga, A. M.; El-Dardiry, M. A., Optimization methods for metal cutting, Int. J. Mach.-Tool Des. Res., 24, 11-18 (1984)
[20] Wolf, P., Methods of non-linear programming, (Graves, R. L.; Wolf, P., Recent Advances in Mathematical Programming (1963)) · Zbl 0122.00201
[21] Abadie, J.; Carpentier, J., Generalization of the Wolf reduced gradient method to the case of non-linear constraints, (Fletcher, R., Optimization (1969)) · Zbl 0254.90049
[22] Averiel, M., Non-Linear Programming Analysis and Methods (1976), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0361.90035
[23] Fiacco, A. V.; McCormick, G. P., Non-Linear Sequential Unconstrained Minimization Techniques (1968), Wiley: Wiley New York · Zbl 0193.18805
[24] Kuester, J. L.; Mize, J. H., Optimization Techniques with Fortran (1973), McGraw-Hill: McGraw-Hill New York · Zbl 0268.65039
[25] Phillips, D. T., American Institute of Industrial Engineering, (21st Inst. Conference and Convention. 21st Inst. Conference and Convention, Cleaveland, Ohio (1970)), 305-310
[26] Box, M. J., A new method of constrained optimization and comparison with other methods, Computer J., 8, 42-52 (1965) · Zbl 0142.11305
[27] Rosenbrock, H. H., An automatic method for finding the greatest or least value of a function, Computer J., 3, 175-184 (1960)
[28] Bazaraa, M. S.; Shetty, C. M., Non-Linear Programming Theory and Algorithms (1979), Wiley: Wiley New York · Zbl 0476.90035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.