×

Schur modules over wild, finite-dimensional path algebras with three simple modules. (English) Zbl 0701.16012

Let k be a field, \(A=k\Delta\) be the path algebra of a finite connected quiver \(\Delta\) without oriented cycles and A-mod the category of finite dimensional left A-modules. Let n be the number of vertices of \(\Delta\). A module Z in A-mod is called a Schur module if End Z\(=k\) and \(Ext^ 1_ A(Z,Z)=0\). The set of isoclasses of Schur modules carries the structure of a simplicial complex, where an i-simplex is an \((i+1)\) element set \(\{M_ 0,...,M_ i\}\) of Schur modules with \(Ext^ 1_ A(M_ j,M_ s)=0\) for \(0\leq j,s\leq i\). If A is representation-finite or tame, or \(n=2\), then all Schur modules are known. The author considers the case when A is wild and \(n=3\). The unknown Schur modules in this case are the DTr-sincere ones, that is, the Schur modules Z such that \((DTr)^ sZ\) is sincere for all integers s. The main theorem shows that, for a DTr-sincere Schur module Z from A-mod, there exists an integer r and a uniquely determined chain of Schur modules in A-mod \((DTr)^ rZ=Y_ m\to Y_{m-1}\to...\to Y_ 1\to Y_ 0,\) where \(Y_ 0\) is a regular Schur module over a quotient \(A'=A/<e>\) of A by the ideal \(<e>\) generated by a primitive idempotent e, the modules \(Y_ i\), \(1\leq i\leq m\), are DTr-sincere and \(Y_{i-1}\) is simple injective in the left perpendicular category \(^{\perp}Y_ i\) of \(Y_ i\). This gives an effective way of constructing all Schur modules in A-mod (up to DTr- translates) and all simplices of the simplicial complex of Schur modules in A-mod containing a given Schur module. The main tools used in the paper are the perpendicular categories of Schur modules and tilting theory.

MSC:

16G20 Representations of quivers and partially ordered sets
16P10 Finite rings and finite-dimensional associative algebras
16D80 Other classes of modules and ideals in associative algebras
Full Text: DOI

References:

[1] Baer, D., A note on wild quiver algebras and tilting modules, Comm. Algebra, 17, 751-757 (1989) · Zbl 0665.16019
[2] Bongartz, K., Tilted algebras, (Lecture Notes in Mathematics, 903 (1981), Springer: Springer Berlin), 26-38 · Zbl 0478.16025
[3] Bongartz, K., Critical simply connected algebras, Manuscripta Math., 46, 117-136 (1984) · Zbl 0537.16024
[4] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra, to appear.; W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra, to appear. · Zbl 0748.18007
[5] Happel, D., Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lecture Notes Series, 119 (1988) · Zbl 0635.16017
[6] Happel, D.; Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274, 399-443 (1982) · Zbl 0503.16024
[7] Happel, D.; Unger, L., Almost complete tilting modules, Proc. Amer. Math. Soc., 107, 603-610 (1989) · Zbl 0675.16012
[8] Happel, D.; Vossieck, D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math., 42, 221-243 (1983) · Zbl 0516.16023
[9] Hoshino, M., Modules without self-extensions and Nakayama’s conjecture, Arch. Math., 43, 493-500 (1984) · Zbl 0547.16014
[10] Kac, V., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56, 57-92 (1980) · Zbl 0427.17001
[11] Ringel, C. M., Representations of \(K\)-species and bimodules, J. Algebra, 41, 269-302 (1976) · Zbl 0338.16011
[12] Ringel, C. M., Tame algebras and integral quadratic forms, (Lecture Notes in Mathematics, 1099 (1984), Springer: Springer Berlin) · Zbl 0546.16013
[13] Ringel, C. M., The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math., 9B, 1, 1-18 (1988) · Zbl 0667.16024
[14] Schofield, A., Representations of rings over skew fields, London Math. Soc. Lecture Notes Series, 92 (1985) · Zbl 0571.16001
[15] A. Schofield, Generic representations of quivers, preprint.; A. Schofield, Generic representations of quivers, preprint. · Zbl 0795.16008
[16] Strauβ, H., A reduction process via tilting theory, C.R. Rep. Acad. Sci., 9, 3, 161-166 (1987), Canada · Zbl 0639.16019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.