×

Compact and compactly generated subgroups of locally compact groups. (English) Zbl 0696.22002

A locally compact topological group G is called an H(c)-group if every closed subgroup of G is compactly generated and the factor group G/K is a Lie group. G is called an H-group if G has a maximal compact normal subgroup with Lie factor. In this paper, conditions for a locally compact group G to be an H(c)-group and H-group are given. It is noticed that if G is an H(c)-group, then G itself must be a hereditary H-group. The authors also prove that if G has a compactly generated closed normal subgroup F such that both G/F and \(F/F_ 0\) are H-groups, then G is an H-group.
Reviewer: K.-P.Shum

MSC:

22A05 Structure of general topological groups
22D05 General properties and structure of locally compact groups
Full Text: DOI

References:

[1] R. W. Bagley and T. S. Wu, Maximal compact normal subgroups and pro-Lie groups, Proc. Amer. Math. Soc. 93 (1985), no. 2, 373 – 376. · Zbl 0576.22008
[2] R. W. Bagley and M. R. Peyrovian, A note on compact subgroups of topological groups, Bull. Austral. Math. Soc. 33 (1986), no. 2, 273 – 278. · Zbl 0577.22007 · doi:10.1017/S0004972700003142
[3] R. W. Bagley, T. S. Wu, and J. S. Yang, Locally compact groups: maximal compact subgroups and \?-groups, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 47 – 64. · Zbl 0662.22001 · doi:10.1017/S0305004100065233
[4] R. W. Bagley, T. S. Wu, and J. S. Yang, Compactly generated subgroups and open subgroups of locally compact groups, Proc. Amer. Math. Soc. 103 (1988), no. 3, 969 – 976. · Zbl 0661.22004
[5] R. W. Bagley, T. S. Wu, and J. S. Yang, On a class of topological groups more general than SIN groups, Pacific J. Math. 117 (1985), no. 2, 209 – 217. · Zbl 0523.22002
[6] Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317 – 340. · Zbl 0145.03305
[7] Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1 – 40. · Zbl 0219.22011 · doi:10.1515/crll.1971.246.1
[8] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[9] G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. · Zbl 0131.02702
[10] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. · Zbl 0068.01904
[11] G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44 – 55. · Zbl 0065.01404 · doi:10.2307/2007099
[12] M. R. Peyrovian, Maximal compact normal subgroups, Proc. Amer. Math. Soc. 99 (1987), no. 2, 389 – 394. · Zbl 0612.22005
[13] Derek John Scott Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York-Berlin, 1982.
[14] S. P. Wang, Compactness properties of topological groups, Trans. Amer. Math. Soc. 154 (1971), 301 – 314. · Zbl 0224.22005
[15] S. P. Wang, Compactness properties of topological groups. II, Duke Math. J. 39 (1972), 243 – 251. · Zbl 0244.22004
[16] D. H. Lee and T. S. Wu, On \?\? topological groups, Duke Math. J. 37 (1970), 515 – 521. · Zbl 0219.22009
[17] T. S. Wu and Y. K. Yu, Compactness properties of topological groups, Michigan Math. J. 19 (1972), 299 – 313. · Zbl 0244.22003
[18] T. S. Wu, Closures of Lie subgroups and almost periodic groups, Bull. Inst. Math. Acad. Sinica 14 (1986), no. 4, 325 – 347. · Zbl 0624.22003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.