×

Measurable, nonleavable gambling problems. (English) Zbl 0694.60038

The paper deals with the L. E. Dubins and L. J. Savage [Inequalities for stochastic processes. How to gamble if you must. (1976; Zbl 0359.60002)] gambling problem \({\mathcal E}=(X,\Gamma,u)\), where X is a set, u: \(X\to {\mathbb{R}}\), while \(\Gamma\) maps X into sets of finitely additive measures on X; \({\mathcal E}\) is called analytic if X is a Borel set, the graph of \(\Gamma\) is an analytic set (in \(X\times Prob(X))\) while u is bounded and upper analytic (i.e. \(\{x| u(x)>\alpha \}\) is analytic for every real \(\alpha)\); u(\(\sigma\),t) denotes the expected utility under the choice of strategy \(\sigma =(\sigma_ 0,\sigma_ 1,...)\) (which means \(\sigma_ n(x_ 1,...,x_ n)\in \Gamma (x_ n)\) and stopping time t. The authors deal with the functions \[ V(x):=\sup \{\limsup_ tu(\sigma,t)| \quad \sigma \text{ is a strategy available at }x\} \] and \(V_ M(x)\) defined as above but with the choice of strategies restricted to universally measurable functions.
The main theorem of the paper, saying that \(V=V_ M\) and being upper analytic whenever \({\mathcal E}\) is analytic, generalizes a result of R. E. Strauch [Trans. Am. Math. Soc. 126, 64-72 (1967; Zbl 0166.157)]. The proof is based on a theorem of Y. N. Moschovakis [Descriptive set theory. (1980; Zbl 0433.03025), Theorem 7.C.8]. The authors also give alternative characterizations of V.
Reviewer: A.Wieczorek

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
60G35 Signal detection and filtering (aspects of stochastic processes)
Full Text: DOI

References:

[1] Blackwell, D.; Freedman, D.; Orkin, M., The optimal reward operator in dynamic programming, Ann. Probab., 2, 926-941 (1974) · Zbl 0318.49021
[2] Blackwell, D.; Ramakrishnan, S., Stationary strategies need not be adequate for leavable, Borel gambling problems, Proc. Am. Math. Soc., 102, 1024-1027 (1988) · Zbl 0658.60072 · doi:10.2307/2047353
[3] Chen, R., A note on the Dubins-Savage utility of a strategy, Isr. J. Math., 21, 1-6 (1975) · Zbl 0313.62008
[4] Dellacherie, C., Transformations analytiques: théorèmes de capacitabilité, de séparation et d’itération transfinie, inSeminaire Initiation à l’Analyse 20, Publications Mathématiques de l’Université Pierre et Marie Curie, 46, 16-01-16-27 (1980)
[5] Dellacherie, C., Les sous-noyaux élémentaires, Théorie du Potentiel Proceedings, 183-222 (1983), Berlin and New York: Springer-Verlag, Berlin and New York · Zbl 0556.31006 · doi:10.1007/BFb0100112
[6] Dellacherie, C., Quelques résultats sur les maisons de jeux analytiques, Séminaire de Probabilités XIX (Strasbourg 1983-84), 222-229 (1985), Berlin and New York: Springer-Verlag, Berlin and New York · Zbl 0565.60041
[7] C. Dellacherie and P. A. Meyer,Probabilités et Potentiel, Hermann, Paris, Chapters I-IV, 1975; Chapters IX-XI, 1983. · Zbl 0323.60039
[8] Dubins, L. E.; Savage, L. J., Inequalities for Stochastic Processes (1976), New York: Dover, New York · Zbl 0359.60002
[9] Dubins, L. E.; Sudderth, W., On stationary strategies for absolutely continuous houses, Ann. Probab., 7, 461-476 (1979) · Zbl 0401.60055
[10] Louveau, A., Capacitabilité et sélections Boreliennes, inSéminaire Initiation à l’Analyse 21, Publications Mathématiques de l’Université Pierre et Marie Curie, 54, 19-01-19-21 (1981) · Zbl 0556.28006
[11] A. Maitra, R. Purves and W. Sudderth,Leavable gambling problems with unbounded utilities, Trans. Am. Math. Soc., to appear. · Zbl 0753.60043
[12] A. Maitra, R. Purves and W. Sudderth,A Borel measurable version of Konig’s Lemma for random paths, Ann. Probab., to appear. · Zbl 0722.60037
[13] Meyer, P. A.; Traki, M., Réduites et jeux de hasard, Séminaire de Probabilités VII (Strasbourg 1971-72), 155-171 (1973), Berlin and New York: Springer-Verlag, Berlin and New York · Zbl 0263.90052
[14] Moschovakis, Y. N., Descriptive Set Theory (1980), Amsterdam: North-Holland, Amsterdam · Zbl 0433.03025
[15] Parthasarathy, K. R., Probability Measures on Metric Spaces (1967), New York: Academic Press, New York · Zbl 0153.19101
[16] Pestien, V., Weak approximation of strategies in measurable gambling, Pacific J. Math., 109, 157-164 (1983) · Zbl 0533.60053
[17] Purves, R.; Sudderth, W., Some finitely additive probability, Ann. Probab., 4, 259-276 (1976) · Zbl 0367.60034
[18] Strauch, R. E., Measurable gambling houses, Trans. Am. Math. Soc., 126, 64-72 (1967) · Zbl 0166.15705 · doi:10.2307/1994413
[19] Sudderth, W. D., On the existence of good stationary strategies, Trans. Am. Math. Soc., 135, 399-414 (1969) · Zbl 0176.50105 · doi:10.2307/1995023
[20] Sudderth, W. D., On measurable gambling problems, Ann. Math. Statist., 42, 260-269 (1971) · Zbl 0226.90061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.