×

Limit problems in optimal control theory. (English) Zbl 0684.49006

The authors deal with sequences of optimal control problems of the form \[ ({\mathfrak P}_ h)\quad \min \{\int^{1}_{0}f_ h(t,y,u)dt:\quad y'=g_ h(t,y,u),\quad y(0)=y^ 0_ h\}, \] where the state variable y belongs to the Sobolev space \(Y=W^{1,1}(0,1;{\mathbb{R}}^ n)\) and the control variable u is in \(U=L^ 1(0,1;{\mathbb{R}}^ m)\). A “limit problem” (\({\mathfrak P}_{\infty})\) is constructed such that - if \((u_ h,y_ h)\) is an optimal pair for (\({\mathfrak P}_ h)\) and if \((u_ h,y_ h)\) tends to \((u_{\infty},y_{\infty})\) in the topology \(wL^ 1(0,1;{\mathbb{R}}^ m)\times L^{\infty}(0,1;{\mathbb{R}}^ n)\), then \((u_{\infty},y_{\infty})\) is an optimal pair for (\({\mathfrak P}_{\infty}).\)
It is shown that, when the functions \(g_ h(t,y,u)\) appearing in the state equations are rapidly oscillating, it may arrive that the domain of the limit problem (\({\mathfrak P}_{\infty})\) is not given by a state equation \(y'=g_{\infty}(t,y,u)\), and, in some situations, it may coincide with the whole product space \(U\times Y.\)
The basic tool used for constructing the limit problem (\({\mathfrak P}_{\infty})\) is the \(\Gamma\)-convergence theory for functionals defined on a product space.
Reviewer: G.Buttazzo

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49J15 Existence theories for optimal control problems involving ordinary differential equations
49J99 Existence theories in calculus of variations and optimal control

References:

[1] H. Attouch: Variational Convergence for Functions and Operators. Appl. Math. Ser., Pitman, Boston (1984). · Zbl 0561.49012
[2] Buttazzo, G., Su una definizione generale dei γ-limiti, Boll. Un. Mat. Ital., 14-B, 722-744, (1977) · Zbl 0445.49016
[3] Buttazzo, G., Some relaxation problems in optimal control theory, J. Math. Anal. Appl., 125, 272-287, (1987) · Zbl 0633.49007
[4] Buttazzo, G.; Dal Maso, G., Γ-convergence and optimal control problems, J. Optim. Theory Appl., 38, 385-407, (1982) · Zbl 0471.49012
[5] Cavazzuti, E., G-convergenze multiple, convergenze di punti di sella edi MAX-MIN, Boll. Un. Mat. Ital., 1-B, 251-274, (1982) · Zbl 0488.49003
[6] Clarke, F. H., Admissible relaxation in variational and control problems, J. Math. Anal. Appl., 51, 557-576, (1975) · Zbl 0326.49031
[7] Clarke, F. H., Optimization and nonsmooth analysis, (1983), Wiley Interscience New York · Zbl 0582.49001
[8] De Giorgi, E., Convergence problems for functionals and operators, (De Giorgi, E.; Magenes, E.; Mosco, U., Proceedings of “Recent Methods in Nonlinear Analysis” Rome 1978, (1979), Bologna Pitagora), 131-188
[9] De Giorgi, E.; Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 58, 842-850, (1975) · Zbl 0339.49005
[10] Zolezzi, T., On equiwellset minimum problems, Appl. Math. Optim, 4, 209-223, (1978) · Zbl 0381.90105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.