×

Explicit construction of linear sized tolerant networks. (English) Zbl 0657.05068

A problem occurring in the study of fault tolerant linear arrays is the construction of a graph with the minimum number of vertices and edges such that after removing all but \(\epsilon\) portion of its vertices or edges, the remaining graph contains a path of some specified length. Suppose \(\epsilon >0\) and m is any integer, \(m\geq 1\). The authors present an explicit construction of graphs G with O(m/\(\epsilon)\) vertices and maximum degree \(O(1/\epsilon^ 2)\) such that after deleting all but \(\epsilon\)-portion of its vertices or edges, the remaining graph contains a path of length m.
Reviewer: D.P.Brown

MSC:

05C99 Graph theory
05C55 Generalized Ramsey theory
05C38 Paths and cycles
Full Text: DOI

References:

[1] Alon, N., Eigenvalues and expanders, Combinatorica, 6, 83-96 (1986) · Zbl 0661.05053
[2] Alon, N.; Milman, V. D., Eigenvalues expanders and superconcentrators, 25th Annual symposium on foundation of computer science, 320-322 (1984)
[3] Alon, N.; Milman, V. D., \(λ_1\), isoperimetric inequalities for graphs and superconcentrators, J. Combin. Theory Ser. B, 38, 73-88 (1985) · Zbl 0549.05051
[4] Beck, J., On size Ramsey number of paths, trees and cycles I, J. Graph Theory, 7, 115-130 (1983) · Zbl 0508.05047
[5] Bhatt, S.; Chung, F.; Leighton, T.; Rosenberg, A., Optimal simulation of tree machines, Proc. 27th FOCS, 274-282 (1986)
[6] Burr, S. A., A survey of noncomplete Ramsey theory for graphs, Ann. NY Acad. Science, 328, 58-75 (1979) · Zbl 0481.05049
[7] Chung, F. R.K.; Graham, R. L., On universal graphs for spanning trees, Proc. London Math. Soc., 27, 203-211 (1983) · Zbl 0509.05033
[8] Davenport, H., Multiplicative Number Theory (1980), Springer Verlag: Springer Verlag Berlin, Chapter 7 · Zbl 0453.10002
[9] Erdös, P.; Graham, R. L.; Szemerédi, E., On sparse graphs with dense long paths, Comp. and Math. with Appl., 1, 365-369 (1975) · Zbl 0328.05123
[10] Erdös, P.; Faudree, R. J.; Rousseau, C. C.; Schelp, R. H., The size Ramsey number, Period. Math. Hungar., 9, 145-161 (1978) · Zbl 0331.05122
[11] Friedman, J.; Pippenger, N., Expanding graphs contain all small trees, Combinatorica, 7, 71-76 (1987) · Zbl 0624.05028
[12] R.J. Faudree and J. Sheehan, Size Ramsey numbers involving stars. Discrete Math., to appear.; R.J. Faudree and J. Sheehan, Size Ramsey numbers involving stars. Discrete Math., to appear. · Zbl 0518.05047
[13] Graham, R. L.; Rothschild, B. L.; Spencer, J. H., Ramsey Theory (1980), John Wiley and Sons: John Wiley and Sons New York · Zbl 0455.05002
[14] Hayes, J. P., A graph model for fault-tolerant computing systems, IEEE Trans. Comp., C-25, 875-884 (1976) · Zbl 0333.94015
[15] Lovász, L., Combinational problems and exercises (1979), North Holland: North Holland New York
[16] Lubotzky, A.; Phillips, R.; Sarnak, P., Ramanujan graphs (1986), preprint · Zbl 0661.05035
[17] Pósa, L., Hamiltonian circuits in random graphs, Discrete Math., 14, 359-364 (1976) · Zbl 0322.05127
[18] Rosenberg, A. L., Fault-tolerant interconnection networks, a graph-theoretic approach, (Workshop on graph-theoretic concepts in computer science (1983), Trauner Verlag: Trauner Verlag Linz), 286-297 · Zbl 0531.94025
[19] Wong, W. W.; Wong, C. K., Minimum \(k\)-Hamiltonian graphs, IBM Report RC-9254 (1982) · Zbl 0534.05040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.