×

Removable singularities of solutions to a class of quasilinear non- uniformly elliptic equations. (English) Zbl 0655.35020

Let \(\Omega\) be a bounded domain of \({\mathbb{R}}^ n,\) \(n\geq 2\), and K be a compact subset of \(\Omega\). Suppose \(u\in C^ 2(\Omega/k)\) satisfies the quasilinear equations: \[ (1)\quad div A(x,Du)=B(x,u). \] Here \(A=(A_ 1,...,A_ n)\) is a given vector-valued function of \((x,p)\in \Omega \times {\mathbb{R}}^ n\) and B is a given scalar function. Under some conditions on A, B and K, the author proves that u can be defined on K so that the resulting function is a C 2 solution of (1) in all of \(\Omega\). In which the singular set K can indeed be allowed to approach the boundary and some interesting examples are given.
Reviewer: C.F.Wang

MSC:

35J60 Nonlinear elliptic equations
35J67 Boundary values of solutions to elliptic equations and elliptic systems
35B65 Smoothness and regularity of solutions to PDEs

Keywords:

quasilinear
Full Text: DOI

References:

[1] Bers, L., Isolated singularities of minimal surfaces, Ann. of Math., 53, 364-386 (1951) · Zbl 0043.15901
[2] Federer, H., Geometric Measure Theory (1969), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0176.00801
[3] Finn, R., Isolated singularities of solutions of non-linear partial differential equations, Trans. Amer. Math. Soc., 75, 385-404 (1953) · Zbl 0053.39205
[4] Finn, R., On partial differential equations (whose solutions admit no isolated singularities), Scripta Math., 26, 107-115 (1961) · Zbl 0114.30401
[5] De Giorgi, E.; Stampacchia, G., Sulla singolarita elliminabili delle iper-superficie minimali, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 38, 352-357 (1965), [8] · Zbl 0135.40003
[6] Guillemin, V.; Pollack, A., Differential Topology (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0361.57001
[7] Nitsche, J. C.C, Über ein verallgemeinertes Dirichletsches Problem für die Minimalflächengleichung und hebbare Ünstetigkeiten ihrer Lösungen, Math. Ann., 158, 203-214 (1965) · Zbl 0141.09601
[8] Nische, J. C.C, Vorlesungen über Minimalflächen (1975), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0319.53003
[9] Nitsche, J. C.C, The Minimal Surface Equation, (Studies in Pure Math. (1985), Math. Assoc. Amer: Math. Assoc. Amer Washington, D.C) · Zbl 0202.20601
[10] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111, 247-302 (1964) · Zbl 0128.09101
[11] Serrin, J., Removable singularities of solutions of elliptic equations, II, Arch. Rat. Mech. Anal., 20, 163-169 (1966) · Zbl 0156.33801
[12] Simon, L., Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J., 25, 821-855 (1976) · Zbl 0346.35016
[13] Simon, L., On a theorem of De Giorgi and Stampacchia, Math. Z., 155, 199-204 (1977) · Zbl 0385.49022
[14] Vazquez, J.-L; Veron, L., Removable singularities of some strongly non-linear elliptic equations, Manuscripta Math., 33, 129-144 (1980) · Zbl 0452.35034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.