×

Stop rule and supremum expectations of i.i.d. random variables: A complete comparison by conjugate duality. (English) Zbl 0598.60044

\(X_ 1,...,X_ n\) are independent and identically distributed random variables taking values in the closed interval [0,1]. Define \(V(X_ 1,...,X_ n)\) as \(\sup \{EX_ t:\) t is a stop rule for \(X_ 1,...,X_ n\}\). For x in the closed interval [0,1], a nonnegative strictly increasing strictly concave function \(G_ n(x)\) is constructed such that the set of ordered pairs \(\{(x,y):\) \(x=V(X_ 1,...,X_ n)\) and \(y=E(\max_{j\leq n}X_ j)\) for some \(X_ 1,...,X_ n\}\) is precisely the set \(\{(x,y):\) \(x\leq y\leq G_ n(x)\); \(0\leq x\leq 1\}\). Various inequalities are derived from this result.
Reviewer: L.Weiss

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
60E15 Inequalities; stochastic orderings
62L15 Optimal stopping in statistics
90C99 Mathematical programming
Full Text: DOI

References:

[1] Arnold, V. I., (Mathematical Methods of Classical Mechanics (1978), Springer-Verlag: Springer-Verlag New York) · Zbl 0386.70001
[2] Chow, Y. S.; Robbins, H.; Siegmund, D., (Great Expectations: The Theory of Optimal Stopping (1971), Houghton Mifflin: Houghton Mifflin Boston) · Zbl 0233.60044
[3] Chung, K. L., (A Course in Probability Theory (1974), Academic Press: Academic Press New York) · Zbl 0345.60003
[4] Coppel, W. A., (Stability and Asymptotic Behavior of Differential Equations (1965), Heath: Heath Boston) · Zbl 0154.09301
[5] Cox, D. C. Private communication.; Cox, D. C. Private communication.
[6] Hildenbrand, W., (Core and Equilibria of a Large Economy (1974), Princeton Univ. Press: Princeton Univ. Press Princeton, N. J) · Zbl 0351.90012
[7] Hill, T. P., Prophet inequalities and order selection in optimal stopping problems, (Proc. Amer. Math. Soc., 88 (1983)), 131-137 · Zbl 0517.60050
[8] Hill, T. P.; Kertz, R. P., Ratio comparisons of supremum and stop rule expectations, Z. Wahrsch. Verw. Gebiete, 56, 283-285 (1981) · Zbl 0443.60039
[9] Hill, T. P.; Kertz, R. P., Additive comparisons of stop rule and supremum expectations of uniformly bounded independent random variables, (Proc. Amer. Math. Soc., 83 (1981)), 582-585 · Zbl 0476.60044
[10] Hill, T. P.; Kertz, R. P., Comparisons of stop rule and supremum expectations of i.i.d. random variables, Ann. Probab., 10, 336-345 (1982) · Zbl 0483.60035
[11] Hill, T. P.; Kertz, R. P., Stop rule inequalities for uniformly bounded sequences of random variables, Trans. Amer. Math. Soc., 278, 197-207 (1983) · Zbl 0517.60051
[12] Krengel, U.; Sucheston, L., Semiamarts and finite values, Bull. Amer. Math. Soc., 83, 745-747 (1977) · Zbl 0336.60032
[13] Krengel, U.; Sucheston, L., On semiamarts, amarts, and processes with finite value, Advan. Appl. Probab., 4, 197-226 (1978)
[14] Luenberger, D. G., (Optimization by Vector Space Methods (1969), Wiley: Wiley New York) · Zbl 0176.12701
[15] Mitrinovic, D. S., (Analytic Inequalities (1970), Springer-Verlag: Springer-Verlag New York) · Zbl 0199.38101
[16] Stoer, J.; Witzgall, C., (Convexity and Optimization in Finite Dimensions I (1970), Springer-Verlag: Springer-Verlag New York) · Zbl 0203.52203
[17] Widder, (Advanced Calculus (1961), Prentince-Hall: Prentince-Hall Englewood Cliffs, N. J) · Zbl 0036.31302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.