×

Resonant motion of a spherical pendulum. (English) Zbl 0577.70025

Summary: The weakly nonlinear, resonant response of a damped, spherical pendulum (length l, damping ratio \(\delta\), natural frequency \(\omega_ 0)\) to the planar displacement \(\epsilon\) l \(\cos\omega t(\epsilon \ll 1)\) of its point of suspension is examined in a four-dimensional phase space in which the coordinates are slowly varying amplitudes of a sinusoidal motion. The loci of equilibrium points and the corresponding bifurcation points in this space are determined. The control parameters are \(\alpha =2\delta /\epsilon^{2/3}\) and \(v=2(\omega^ 2-\omega^ 2_ 0)/\epsilon^{2/3}\omega^ 2\). If \(\alpha <0.441\) there is a finite interval of v within which no stable equilibrium points exist. As v decreases through the upper bound (a Hopf-bifurcation point) of this interval the motion in the phase space becomes periodic and then, following a period-doubling cascade, chaotic. There may be alternating sub-intervals of chaotic and periodic motion. The chaotic trajectories in the phase space appear to lie on fractal attractors.

MSC:

70K40 Forced motions for nonlinear problems in mechanics
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
70K30 Nonlinear resonances for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Miles, J. W., Quart. Appl. Math., 20, 21 (1962) · Zbl 0108.18601
[2] Hutton, R. E., An investigation of resonant, nonlinear, nonplanar, free surface oscillations of a fluid, NASA Tech. Note, D-1870 (1963), Washington
[3] Lorenz, E. N., J. Atmospheric Sci., 20, 130 (1963) · Zbl 1417.37129
[4] Lichtenberg, A. J.; Lieberman, M. A., Regular and Stochastic Motion (1983), Springer: Springer New York, section 1.5 · Zbl 0506.70016
[5] Lichtenberg, A. J.; Lieberman, M. A., Regular and Stochastic Motion, ((1983), Springer: Springer New York), 61 · Zbl 0506.70016
[6] Lichtenberg, A. J.; Lieberman, M. A., Regular and Stochastic Motion, ((1983), Springer: Springer New York), 388 · Zbl 0506.70016
[7] Mandelbrot, B., The Fractal Geometry of Nature, ((1982), WH Freeman: WH Freeman San Francisco), 195 · Zbl 1233.91345
[8] Lichtenberg, A. J.; Lieberman, M. A., Regular and Stochastic Motion, ((1983), Springer: Springer New York), 17-20 · Zbl 0506.70016
[9] Lichtenberg, A. J.; Lieberman, M. A., Regular and Stochastic Motion, ((1983), Springer: Springer New York), 60 and 382, (7.1.8) · Zbl 0506.70016
[10] Kárman, T.v.; Biot, M. A., Mathematical Methods in Engineering, ((1940), McGraw-Hill: McGraw-Hill New York), 244-246 · JFM 66.0197.03
[11] Gurel, Okan, Ann. N.Y. Acad. Sci., 316, 5 (1979)
[12] Lichtenberg, A. J.; Lieberman, M. A., Regular and Stochastic Motion, ((1983), Springer: Springer New York), 159ff · Zbl 0506.70016
[13] Yorke, J. A.; Yorke, E. D., Chaotic behavior and fluid dynamics, (Swinney, H. L.; Gollub, J. P., Hydrodynamic Instabilities and the Transition to Turbulence (1981), Springer: Springer Berlin), 77 · Zbl 0453.00052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.