×

Degenerate diffusion and the Stefan problem. (English) Zbl 0562.35049

The authors consider the first initial-boundary-value problem for the equation \(u_ t=(\phi (u))_{xx}+f(x,u)\) (rather, its weak form) in which \(\phi\) (s) is constant on an interval (\(\alpha\),\(\beta)\) (finite or semiinfinite with \(\beta =\infty)\) and otherwise strictly increasing. In the context of the Stefan problem, this corresponds to seeking the enthalpy u of a one- or two-phase material when it is given initially (\(\phi\) (u) is its temperature), and there may be nonlinear internal heating (or cooling) according to the function f.
Although a great many qualitative properties of the solution are developed, special attention is focused on properties of the mushy region (where \(u\in [\alpha,\beta])\), if it is an interval at time \(t=0\) and the boundary conditions hold u below \(\alpha\) at the boundary. Then if \(f\leq 0\), it remains a monotonic decreasing interval and vanishes after a finite time. The same is true in the case of the 2-phase problem \((\beta <\infty)\) when one boundary value is less than \(\alpha\) and the other greater than \(\beta\). If \(f\geq 0\) and is large enough, on the other hand, then a mushy region will develop in time and persist, even if it is not present initially. Most of the results are obtained with the use of comparison principles.
Reviewer: P.Fife

MSC:

35K55 Nonlinear parabolic equations
35R35 Free boundary problems for PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
Full Text: DOI

References:

[1] Aronson, D. G., Some properties of the interface for gas flow in porous media, (Fasano, A.; Primicerio, M., Free Boundary Value Problems: Theory and Applications, Proc. Montcatini Symp., Vol. I (1982), Pitman: Pitman London), 150-159 · Zbl 0513.35079
[2] Aronson, D. G.; Caffarelli, L. A.; Kamin, S., How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Analysis, 14, 639-658 (1983) · Zbl 0542.76119
[3] Aronson, D. G.; Crandall, M. G.; Peletier, L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Analysis, 6, 1001-1022 (1982) · Zbl 0518.35050
[4] Atthey, D. R., A finite difference scheme for melting problems, J. Inst. Math. Appl., 13, 353-366 (1974)
[5] Barenblatt, G. I., On some unsteady motions in a liquid or a gas in a porous medium, Prikl. Mat. Mech., 16, 67-78 (1952) · Zbl 0049.41902
[6] Barbu, V., A semigroup approach to an infinite delay equation in Hilbert space, (Kappel, F.; Schappacher, W., Abstract Cauchy Problems and Functional Differential Equations (1981), Pitman: Pitman London), 2-25 · Zbl 0493.34056
[7] Benilan, Ph., Evolution Equations and Accretive Operators, (Lecture Notes (1981), University of Kentucky) · Zbl 0895.47036
[8] Benilan, Ph.; Crandall, M. G., The continuous dependence on φ of solutions of \(u_t\)−\( Δφ (u)=0\), Indiana Univ. Math. J., 30, 161-177 (1981) · Zbl 0482.35012
[9] Bertsch M.Peletier L.A.; Bertsch M.Peletier L.A.
[10] Bertsch, M.; Peletier, L. A., A positivity property of solutions of nonlinear diffusion equations, J. diff. Eqns, 53, 30-47 (1984) · Zbl 0488.35041
[11] Brezis, H.; Crandall, M. G., Uniqueness of solutions of the initial value problem for \(u_t\)−\( Δφ (u)= 0\), J. Math. pures appl., 58, 153-163 (1979) · Zbl 0408.35054
[12] Cannon, J. R., Multiphase parabolic free boundary value problems, (Wilson, D. G.; Solomon, A. D.; Boggs, P. T., Moving Boundary Problems (1978), Academic Press: Academic Press New York) · Zbl 0456.35092
[13] Cannon, J. R.; Henry, D.; Kotlov, D. B., Continuous differentiability of the free boundary for weak solutions of the Stefan problem, Bull. Am. math. Soc., 80, 45-48 (1974) · Zbl 0278.35054
[14] Cannon, J. R.; Henry, D.; Kotlov, D. B., Classical solutions of the one-dimensional, two phase Stefan problem, Annali mat. pura appl., 107, 311-341 (1975) · Zbl 0319.35043
[15] Damlamian, A., Some results on the multi-phase Stefan problem, Communs PDE, 2, 1017-1044 (1977) · Zbl 0399.35054
[16] Diaz J.I.Nonlinear Partial Differential Equations and Free Boundaries; Diaz J.I.Nonlinear Partial Differential Equations and Free Boundaries
[17] DiBenedetto, E., Regularity results for the porous media equation, Annali Mat. pura appl., 121, 249-262 (1979) · Zbl 0428.76074
[18] DiBenedetto, E., Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J., 32, 83-118 (1983) · Zbl 0526.35042
[19] van Duyn, C. J.; Peletier, L. A., Nonstationary filtration in partially saturated porous media, Archs ration. Mech. Analysis, 78, 173-198 (1982) · Zbl 0502.76101
[20] Evans, L. C., Applications of nonlinear semigroup theory to certain partial differential equations, (Crandall, M. G., Nonlinear Evolution Equations (1978), Academic Press)
[21] Fasano, A.; Primicerio, M., A parabolic-hyperbolic free boundary problem: mushy regions with variable temperature in melting processes (1982/83), Universitá degli studi di Firenze, Instituto Matematico, “Ulisse Dini”
[22] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0144.34903
[23] Friedman, A., One dimensional Stefan problems with nonmonotone free boundary, Trans. Am. math. Soc., 133, 89-114 (1968) · Zbl 0162.42001
[24] Gilding, B. H., Hölder continuity of solutions of parabolic equations, J. Lond. Math. Soc., 13, 103-106 (1976) · Zbl 0319.35045
[25] Höllig, K.; Nohel, J., A diffusion equation with a nonmonotone constitutive function, (Ball, J. M., Systems of Nonlinear Partial Differential Equations (1983), Reidel: Reidel Dordrecht), 409-422 · Zbl 0531.35045
[26] Höllig, K.; Nohel, J. A., A nonlinear integral equation occuring in a singular free boundary problem, (Technical Summary Report No. 2475 (1983), Mathematics Research Center, University of Wisconsin: Mathematics Research Center, University of Wisconsin Madison)
[27] Kamenomostkaja, S. L., On Stefan’s problem, Math. Sbornik, 53, 485-514 (1965)
[28] Lacey A.A.Tayler A.B.; Lacey A.A.Tayler A.B. · Zbl 0531.35076
[29] Magenes, E., Problemi di Stefan bifase in piu’ variabili spaziali (1981), Instituto di Analisi Numerica del CNR: Instituto di Analisi Numerica del CNR Pavia, preprint No. 309
[30] Meirmanov, A. M., An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23, 564-566 (1981) · Zbl 0545.35097
[31] Niezgodka, M.; Pawlow, I., A generalized Stefan problem in several space variables, Appl. Math. Optim., 9, 193-224 (1983) · Zbl 0519.35079
[32] Ockendon, J. R., Linear and nonlinear stability of a class of moving boundary problems, (Magenes, E., Free Boundary Problems, Proc. Symp. Pavia (1980), INDAM: INDAM Roma), 443-478 · Zbl 0466.35069
[33] Oleinik, O. A., A method of solution of the general Stefan problem, Soviet Math. Dokl., 1, 1350-1353 (1960) · Zbl 0131.09202
[34] Peletier, L. A., The porous media equation, (Amann, H.; Bazley, N.; Kirchgassner, K., Application of Nonlinear Analysis in the Physical Sciences (1981), Pitman), 229-241 · Zbl 0497.76083
[35] Peletier, L. A., A necessary and sufficient condition for the existence of an interface in flows through porous media, Archs ration. Mech. Analysis, 56, 183-190 (1974) · Zbl 0294.35040
[36] da Prato, G., Applications croissantes et équations d’évolutions dans les espaces de Banach, (Institutiones Mathematicae, II (1976), Academic Press: Academic Press London) · Zbl 0352.47002
[37] Primicerio, M.; Gorenflo; Hoffman, Mushy regions in phase change problems, Applied Nonlinear Analysis, 251-269 (1982), Frankfurt am Main · Zbl 0518.35087
[38] Rubinstein, L., On mathematical modelling a solid-liquid zone in a two-phase monocomponent system and in binary alloy, Control Cybernet, 10, 187-216 (1981) · Zbl 0485.93037
[39] \( \textsc{Showalter R.E.}L^1\); \( \textsc{Showalter R.E.}L^1\)
[40] Visintin, A., Sur le problème de Stefan avec flux non lineaire, Boll. Un. mat. ital., 18C, 63-86 (1981) · Zbl 0471.35078
[41] Visintin, A., The Stefan problem for a class of degenerate parabolic equation, (Fasano, A.; Primicerio, M., Free Boundary Value Problems: Theory and Applications, Proc. Montecatini Symp., Vol. II (1982), Pitman: Pitman London), 419-430
[42] Wu, Zhuoqun; Zhao, Junning, The first boundary value problem for quasilinear degenerate parabolic equations of second order in several space variables, Chin. Ann. Math., 4B, 57-76 (1983) · Zbl 0508.35049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.