×

On inner ideals and ad-nilpotent elements of Lie algebras. (English) Zbl 0373.17003

Summary: An inner ideal of a Lie algebra \(L\) over a commutative ring \(k\) is a \(k\)-submodule \(B\) of \(L\) such that \([B[BL]] \subseteq B\). This paper investigates properties of inner ideals and obtains results relating ad-nilpotent elements and inner ideals. For example, let \(L\) be a simple Lie algebra in which \(D_y^2 = 0\) implies \(y = 0\), where \(D_y\) denotes the adjoint mapping determined by \(y\). If \(L\) satisfies the descending chain condition on inner ideals and has proper inner ideals, then \(L\) contains a subalgebra \(S = \langle e,f,h\rangle \), isomorphic to the split 3-dimensional simple Lie algebra, such that \(D_e^3 = D_f^3 = 0\). Lie algebras having such 3-dimensional subalgebras decompose into the direct sum of two copies of a Jordan algebra, two copies of a special Jordan module, and a Lie subalgebra of transformations of the Jordan algebra and module. The main feature of this decomposition is the correspondence between the Lie and the Jordan structures. In the special case when \(L\) is a finite dimensional, simple Lie algebra over an algebraically closed field of characteristic \(p > 5\) this decomposition yields:
Theorem. \(L\) is classical if and only if there is an \(x \neq 0\) in \(L\) such that \(D_x^{p-1} = 0\) and if \(D_y^2 = 0\) implies \(y = 0\). The proof involves actually constructing a Cartan subalgebra which has 1-dimensional root spaces for nonzero roots and then using the Block axioms.
Reviewer: Georgia Benkart

MSC:

17B05 Structure theory for Lie algebras and superalgebras
17B20 Simple, semisimple, reductive (super)algebras
17B65 Infinite-dimensional Lie (super)algebras
17C10 Structure theory for Jordan algebras
17C20 Simple, semisimple Jordan algebras
Full Text: DOI

References:

[1] B. N. Allison, A construction of Lie algebras from \cal\?-ternary algebras, Amer. J. Math. 98 (1976), no. 2, 285 – 294. · Zbl 0342.17008 · doi:10.2307/2373884
[2] Richard E. Block, On the Mills-Seligman axioms for Lie algebras of classical type, Trans. Amer. Math. Soc. 121 (1966), 378 – 392. · Zbl 0136.30402
[3] Richard E. Block, Determination of the differentiably simple rings with a minimal ideal., Ann. of Math. (2) 90 (1969), 433 – 459. · Zbl 0216.07303 · doi:10.2307/1970745
[4] W. Hein, A construction of Lie algebras by triple systems, Trans. Amer. Math. Soc. 205 (1975), 79 – 95. · Zbl 0306.17003
[5] Ulrich Hirzebruch, Über eine Klasse von Lie-Algebren, J. Algebra 11 (1969), 461 – 467 (German). · Zbl 0167.03201 · doi:10.1016/0021-8693(69)90067-2
[6] John B. Jacobs, On classifying simple Lie algebras of prime characteristic by nilpotent elements, J. Algebra 19 (1971), 31 – 50. · Zbl 0251.17005 · doi:10.1016/0021-8693(71)90114-1
[7] N. Jacobson, Enveloping algebras of semi-simple Lie algebras, Canadian J. Math. 2 (1950), 257 – 266. · Zbl 0039.02803
[8] N. Jacobson, A note on three dimensional simple Lie algebras, J. Math. Mech. 7 (1958), 823 – 831. · Zbl 0198.05404
[9] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[10] Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. · Zbl 0218.17010
[11] A. I. Kostrikin, The Burnside problem, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 3 – 34 (Russian). · Zbl 0090.24503
[12] A. I. Kostrikin, Simple Lie \?-algebras, Trudy Mat. Inst. Steklov. 64 (1961), 79 – 89 (Russian). · Zbl 0199.07301
[13] A. I. Kostrikin, Strong degeneracy of simple Lie \?-algebras, Dokl. Akad. Nauk SSSR 150 (1963), 248 – 250.
[14] A. I. Kostrikin, Squares of adjoined endomorphisms in simple Lie \?-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 445 – 487 (Russian). · Zbl 0177.05503
[15] Kevin McCrimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671 – 678. · Zbl 0175.31002
[16] G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0189.03201
[17] Helmut Strade, Nonclassical simple Lie algebras and strong degeneration, Arch. Math. (Basel) 24 (1973), 482 – 485. · Zbl 0275.17004 · doi:10.1007/BF01228244
[18] J. Tits, Une classe d’algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 530 – 535 (French). · Zbl 0104.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.