\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

On forward and inverse problems for a DCIS model with free boundaries in mathematical biology

  • *Corresponding author: Keji Liu

    *Corresponding author: Keji Liu

Keji Liu is supported by [the NNSF of China under grant No. 12071275] and Hongyu Liu is supported by [the NSFC/RGC Joint Research Scheme, N_CityU101/21, ANR/RGC Joint Research Scheme, A-CityU203/19, and the Hong Kong RGC General Research Funds (projects 11311122, 12301420 and 11300821)]

Abstract / Introduction Full Text(HTML) Figure(11) / Table(4) Related Papers Cited by
  • We are concerned with the mathematical study of a DCIS model which arises in characterizing the biological development of breast cancer. A salient feature of a DCIS model is the presence of free boundaries for describing the tumor growth which is not known in advance. In this paper, we are particularly interested in the case with general free boundaries which may be asymmetric. We first propose an iterative finite difference method for the forward problem and show that the method is of 2nd order in both space and time. Then we propose to study an inverse problem of recovering the nutrient consumption rate by the incisional biopsy data. We establish the unique identifiability of the inverse problem and develop a novel reconstruction scheme based on a certain integral formulation. Extensive numerical experiments are conducted to corroborate the theoretical findings. Our study opens up a new direction of research in mathematical biology with many potential extensions and developments.

    Mathematics Subject Classification: Primary: 35R30, 35R35, 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The demonstrations of (a) the normal duct, (b) the atypical hyperplasia and (c) DCIS [16]

    Figure 2.  The schematic illustration of the DCIS model with asymmetric free boundaries 

    Figure 3.  A schematic illustration of the pathological section at $ t = T $

    Figure 4.  The direct problem of example 1: the approximations of asymmetric free boundaries $ \varphi_i(t) (i = 1,2) $ for (a) $ t\in[0,0.5] $ and (b) $ t\in[0,1] $ 

    Figure 5.  The inverse problem of example 1: the reconstructions of consumption rate $ \lambda(x) $ at (a) $ t = 0.5 $ and (b) $ t = 1 $; the forecasts of the moving boundaries $ \varphi_i(t) (i = 1,2) $ for (c) $ t\in[0.5,1.5] $ and (d) $ t\in[1,1.5] $ 

    Figure 6.  The direct problem of example 2: the approximations of asymmetric free boundaries $ \varphi_i(t) (i = 1,2) $ for (a) $ t\in[0,0.5] $ and (b) $ t\in[0,1] $ 

    Figure 7.  The inverse problem of example 2: the reconstructions of consumption rate $ \lambda(x) $ at (a) $ t = 0.5 $ and (b) $ t = 1 $; the forecasts of the moving boundaries $ \varphi_i(t) (i = 1,2) $ for (c) $ t\in[0.5,1.5] $ and (d) $ t\in[1,1.5] $ 

    Figure 8.  The direct problem of example 3: the approximations of asymmetric free boundaries $ \varphi_i(t) (i = 1,2) $ for (a) $ t\in[0,0.25] $ and (b) $ t\in[0,0.5] $ 

    Figure 9.  The inverse problem of example 3: the reconstructions of consumption rate $ \lambda(x) $ at (a) $ t = 0.25 $ and (b) $ t = 0.5 $; the forecasts of the moving boundaries $ \varphi_i(t) (i = 1,2) $ for (c) $ t\in[0.25,0.8] $ and (d) $ t\in[0.5,0.8] $ 

    Figure 10.  The direct problem of example 4: the approximations of asymmetric free boundaries $ \varphi_i(t) (i = 1,2) $ for (a) $ t\in[0,0.5] $ and (b) $ t\in[0,1] $ 

    Figure 11.  The inverse problem of example 4: the reconstructions of consumption rate $ \lambda(x) $ at (a) $ t = 0.5 $ and (b) $ t = 1 $; the forecasts of the moving boundaries $ \varphi_i(t) (i = 1,2) $ for (c) $ t\in[0.5,1.5] $ and (d) $ t\in[1,1.5] $ 

    Table 1.  The maximum relative errors $ \delta_\infty^u $ and $ \delta_\infty^\varphi $, and the order of accuracy $ Ord_\infty $ in experiment 1 

    $ \tau=h $ $ \delta_\infty^u $ $ \delta_\infty^\varphi $ $ Ord_\infty $
    1/20 2.915E$ - $03 1.330E$ - $03 *
    1/40 8.554E$ - $04 3.680E$ - $04 1.775
    1/80 2.304E$ - $04 9.660E$ - $05 1.887
    1/160 5.973E$ - $05 2.473E$ - $05 1.947
     | Show Table
    DownLoad: CSV

    Table 2.  The maximum relative errors $ \delta_\infty^u $ and $ \delta_\infty^\varphi $, and the order of accuracy $ Ord_\infty $ in experiment 2 

    $ \tau=h $ $ \delta_\infty^u $ $ \delta_\infty^\varphi $ $ Ord_\infty $
    1/20 3.937E$ - $04 3.761E$ - $03 *
    1/40 1.289E$ - $04 9.382E$ - $04 1.750
    1/80 3.937E$ - $05 2.342E$ - $04 1.872
    1/160 1.136E$ - $05 5.854E$ - $05 1.925
     | Show Table
    DownLoad: CSV

    Table 3.  The maximum relative errors $ \delta_\infty^u $ and $ \delta_\infty^\varphi $, and the order of accuracy $ Ord_\infty $ in experiment 3 

    $ \tau=h $ $ \delta_\infty^u $ $ \delta_\infty^\varphi $ $ Ord_\infty $
    1/20 5.442E$ - $02 8.278E$ - $03 *
    1/40 8.715E$ - $03 2.420E$ - $03 1.743
    1/80 2.587E$ - $03 6.527E$ - $04 1.857
    1/160 7.335E$ - $04 1.692E$ - $04 1.923
     | Show Table
    DownLoad: CSV

    Table 4.  The maximum relative errors $ \delta_\infty^u $ and $ \delta_\infty^\varphi $, and the order of accuracy $ Ord_\infty $ in experiment 4 

    $ \tau=h $ $ \delta_\infty^u $ $ \delta_\infty^\varphi $ $ Ord_\infty $
    1/20 1.678E$ - $03 1.207E$ - $03 *
    1/40 4.540E$ - $04 3.287E$ - $04 1.886
    1/80 8.168E$ - $05 7.040E$ - $05 1.958
    1/160 2.936E$ - $05 2.644E$ - $05 1.992
     | Show Table
    DownLoad: CSV
  • [1] H. M. Byrne and M. A. J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Bios., 130 (1995), 151-181. 
    [2] X. ChenS. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Trans. Amer. Math. Soc., 357 (2005), 4771-4804.  doi: 10.1090/S0002-9947-05-03784-0.
    [3] X. Chen and A. Friedman, Free boundary problem for an elliptic-hyperbolic system: An application to tumor growth, SIAM Math. Anal., 35 (2003), 974-986.  doi: 10.1137/S0036141002418388.
    [4] A. Friedman, Free boundary problems in biology, Phil. Trans. R. Soc. A, 373 (2015), 20140368, 16 pp. doi: 10.1098/rsta.2014.0368.
    [5] A. Friedman and F. Reitich, Analysis of a mathematical model for growth of tumors, J. Math. Biol., 38 (1999), 262-284.  doi: 10.1007/s002850050149.
    [6] H. P. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 52 (1972), 317-340. 
    [7] H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242.  doi: 10.1016/S0022-5193(76)80054-9.
    [8] D. Liu, K. Liu and D. Xu, The existence and numerical method for a free boundary problem modeling the ductal carcinoma in situ, Appl. Math. Lett., 121 (2021), 107378, 8 pp. doi: 10.1016/j.aml.2021.107378.
    [9] D. LiuK. LiuX. Xu and J. Yu, The global existence and numerical method for the free boundary problem of DCIS, Math. Meth. Appl. Sci., 45 (2022), 5908-5929.  doi: 10.1002/mma.8146.
    [10] G. J. PettetC. P. PleaseM. Tindall and D. McElwain, The migration of cells in multicell tumor spheroids, Bull. Math. Biol., 63 (2001), 231-257. 
    [11] J. P. Ward and J. P. King, Mathematical modeling of avascular-tumor growth, Math. Medi. Biol., 14 (1997), 39-70. 
    [12] Y. Xu, A free boundary problem model of ductal carcinoma in situ, Disc. Cont. Dyna. Syst. Ser. B, 4 (2004), 337-348.  doi: 10.3934/dcdsb.2004.4.337.
    [13] Y. Xu, A mathematical model of ductal carcinoma in situ and its characteristic patterns, Adv. Anal., (2005), 365-374. 
    [14] Y. Xu, A free boundary problem of diffusion equation with integral condition, Appl. Anal., 85 (2006), 1143-1152.  doi: 10.1080/00036810600835243.
    [15] Y. Xu and R. Gilbert, Some inverse problems raised from a mathematical model of ductal carcinoma in situ, Math. Comp. Mode., 49 (2009), 814-828.  doi: 10.1016/j.mcm.2008.02.014.
    [16] The demonstration of DCIS from the website: https://www.rnceus.com/Breast_in_situ/histology.html.
  • 加载中

Figures(11)

Tables(4)

SHARE

Article Metrics

HTML views(718) PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return