\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Logarithmic double phase problems with convection: existence and uniqueness results

  • *Corresponding author: Patrick Winkert

    *Corresponding author: Patrick Winkert
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we deal with a problem driven by a logarithmic double phase operator with variable exponent and a nonlinearity on the right-hand side which also depends on the gradient of the solution. Under very general structure conditions, following a topological approach based on the use of pseudomonotone operators, we establish the existence of a nontrivial weak solutions for the problem under consideration. Moreover, imposing more restrictive conditions on the nonlinearity, we are able to provide the uniqueness of the solution. Finally, we prove the boundedness, closedness and compactness of the related solution set to our problem.

    Mathematics Subject Classification: Primary: 35A01, 35A16; Secondary: 35J62.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. S. Albalawi, N. H. Alharthi and F. Vetro, Gradient and parameter dependent Dirichlet $(p(x), q(x))$-Laplace type problem, Mathematics, 10 (2022), 15 pp. doi: 10.3390/math10081336.
    [2] R. Arora, Á. Crespo-Blanco and P. Winkert, On logarithmic double phase problems, preprint, 2023, arXiv: 2309.09174.
    [3] P. BaroniM. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347-379.  doi: 10.1090/spmj/1392.
    [4] C. De Filippis and G. Mingione, Regularity for double phase problems at nearly linear growth, Arch. Ration. Mech. Anal. 247 (2023), 50 pp. doi: 10.1007/s00205-023-01907-3.
    [5] L. Diening, P. Harjulehto, P. Hästö and M. R$\mathring{\text{u}}$žička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.
    [6] X. FanQ. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317.  doi: 10.1016/j.jmaa.2003.11.020.
    [7] L. F. O. FariaO. H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with the $(p, q)$-Laplacian and a convection term, Proc. Edinb. Math. Soc., 57 (2014), 687-698.  doi: 10.1017/S0013091513000576.
    [8] G. M. Figueiredo and G. F. Madeira, Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient, J. Differ. Equ., 274 (2021), 857-875.  doi: 10.1016/j.jde.2020.10.033.
    [9] M. Fuchs and G. Mingione, Full $C^{1, \alpha}$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250.  doi: 10.1007/s002291020227.
    [10] M. Fuchs and G. Seregin, Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Springer-Verlag, Berlin, 2000.
    [11] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006.
    [12] L. Gasiński and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differ. Equ., 263 (2017), 1451-1476.  doi: 10.1016/j.jde.2017.03.021.
    [13] L. Gasiński and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equ., 268 (2020), 4183-4193.  doi: 10.1016/j.jde.2019.10.022.
    [14] U. GuarnottaR. Livrea and S. A. Marano, Some recent results on singular $p$-Laplacian equations, Demonstr. Math., 55 (2022), 416-428.  doi: 10.1515/dema-2022-0031.
    [15] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Springer, Cham, 2019.
    [16] S. A. Marano and P. Winkert, On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal., 187 (2019), 159-169.  doi: 10.1016/j.na.2019.04.008.
    [17] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equ., 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.
    [18] P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Differ. Equ., 221 (2006), 412-443.  doi: 10.1016/j.jde.2004.11.011.
    [19] N. S. PapageorgiouC. Vetro and F. Vetro, Singular double phase problems with convection, Acta Appl. Math., 170 (2020), 947-962.  doi: 10.1007/s10440-020-00364-4.
    [20] N. S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2018.
    [21] G. A. Seregin and J. Frehse, Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Proceedings of the St. Petersburg Mathematical Society, Vol. V, Amer. Math. Soc., Providence, RI 193 (1999), 127-152.
    [22] C. Vetro, Variable exponent $p(x)$-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 16 pp. doi: 10.1016/j.jmaa.2021.125721.
    [23] F. Vetro and P. Winkert, Existence, uniqueness and asymptotic behavior of parametric anisotropic $(p, q)$-equations with convection, Appl. Math. Optim., 86 (2022), 18 pp. doi: 10.1007/s00245-022-09892-x.
    [24] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. 
  • 加载中
SHARE

Article Metrics

HTML views(503) PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return