Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 27, 2023

Gromov ellipticity and subellipticity

  • Shulim Kaliman EMAIL logo and Mikhail Zaidenberg
From the journal Forum Mathematicum

Abstract

We establish the equivalence of Gromov ellipticity and subellipticity in the algebraic category.

MSC 2020: 14R10; 14D99; 32Q56

Communicated by Shigeharu Takayama


References

[1] I. Arzhantsev, Automorphisms of algebraic varieties and infinite transitivity, St. Petersburg Math. J. 34 (2023), no. 2, 143–178. 10.1090/spmj/1749Search in Google Scholar

[2] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch and M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767–823. 10.1215/00127094-2080132Search in Google Scholar

[3] I. Arzhantsev, A. Perepechko and H. Süß, Infinite transitivity on universal torsors, J. Lond. Math. Soc. (2) 89 (2014), no. 3, 762–778. 10.1112/jlms/jdt081Search in Google Scholar

[4] F. Bogomolov, I. Karzhemanov and K. Kuyumzhiyan, Unirationality and existence of infinitely transitive models, Birational Geometry, Rational Curves, and Arithmetic, Simons Symp., Springer, Cham (2013), 77–92. 10.1007/978-1-4614-6482-2_4Search in Google Scholar

[5] M. Brion, D. Luna and T. Vust, Espaces homogènes sphériques, Invent. Math. 84 (1986), no. 3, 617–632. 10.1007/BF01388749Search in Google Scholar

[6] I. Cheltsov, J. Park, Y. Prokhorov and M. Zaidenberg, Cylinders in Fano varieties, EMS Surv. Math. Sci. 8 (2021), no. 1–2, 39–105. 10.4171/emss/44Search in Google Scholar

[7] H. Flenner, S. Kaliman and M. Zaidenberg, A Gromov–Winkelmann type theorem for flexible varieties, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2483–2510. 10.4171/jems/646Search in Google Scholar

[8] F. Forstnerič, The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002), no. 3, 527–551. 10.1007/s00209-002-0429-3Search in Google Scholar

[9] F. Forstnerič, Stein Manifolds and Holomorphic Mappings, 2nd ed., Ergeb. Math. Grenzgeb. (3) 56, Springer, Cham, 2017. 10.1007/978-3-319-61058-0_1Search in Google Scholar

[10] F. Forstnerič, Recent developments on Oka manifolds, Indag. Math. (N. S.) 34 (2023), no. 2, 367–417. 10.1016/j.indag.2023.01.005Search in Google Scholar

[11] M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851–897. 10.1090/S0894-0347-1989-1001851-9Search in Google Scholar

[12] S. Kaliman, F. Kutzschebauch and T. T. Truong, On subelliptic manifolds, Israel J. Math. 228 (2018), no. 1, 229–247. 10.1007/s11856-018-1760-7Search in Google Scholar

[13] Y. Kusakabe, Oka complements of countable sets and nonelliptic Oka manifolds, Proc. Amer. Math. Soc. 148 (2020), no. 3, 1233–1238. 10.1090/proc/14832Search in Google Scholar

[14] Y. Kusakabe, On the fundamental groups of subelliptic varieties, preprint (2022), https://arxiv.org/abs/2212.07085. Search in Google Scholar

[15] F. Lárusson and T. T. Truong, Algebraic subellipticity and dominability of blow-ups of affine spaces, Doc. Math. 22 (2017), 151–163. 10.4171/dm/562Search in Google Scholar

[16] F. Lárusson and T. T. Truong, Approximation and interpolation of regular maps from affine varieties to algebraic manifolds, Math. Scand. 125 (2019), no. 2, 199–209. 10.7146/math.scand.a-114893Search in Google Scholar

[17] A. R. Magid, The Picard sequences of a fibration, Proc. Amer. Math. Soc. 53 (1975), no. 1, 37–40. 10.1090/S0002-9939-1975-0382275-6Search in Google Scholar

[18] V. L. Popov, On the Makar–Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, Affine Algebraic Geometry, CRM Proc. Lecture Notes 54, American Mathematical Society, Providence (2011), 289–311. 10.1090/crmp/054/17Search in Google Scholar

Received: 2023-01-22
Revised: 2023-04-29
Published Online: 2023-06-27
Published in Print: 2024-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2024 from https://www.degruyter.com/document/doi/10.1515/forum-2023-0016/html
Scroll to top button