2024 Volume 14 Issue 3
Article Contents

Jun Li. CANARD CYCLE IN A SLOW-FAST BITROPHIC FOOD CHAIN MODEL IN CHEMOSTAT[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1360-1373. doi: 10.11948/20230141
Citation: Jun Li. CANARD CYCLE IN A SLOW-FAST BITROPHIC FOOD CHAIN MODEL IN CHEMOSTAT[J]. Journal of Applied Analysis & Computation, 2024, 14(3): 1360-1373. doi: 10.11948/20230141

CANARD CYCLE IN A SLOW-FAST BITROPHIC FOOD CHAIN MODEL IN CHEMOSTAT

  • In this paper, we propose a predator-prey bitrophic food chain model with Monod type and Holling-II functional response function in the chemostat scenario. Suppose the speed of nutrition is slow and the conversion rate of predator is low, then the system can be altered to a slow-fast system. By using the geometric singular perturbation theory, we are able to prove the existence of canard cycles and the cyclicity of slow-fast cycles.

    MSC: 34C23, 34E17
  • 加载中
  • [1] S. B. Ai and S. Sadhu, The entry-exit theorem and relaxation oscillations in slow-fast planar systems, Journal of Differential Equations, 2020, 268(11), 7220–7249. doi: 10.1016/j.jde.2019.11.067

    CrossRef Google Scholar

    [2] T. Bolger, B. Eastman, M. Hill and G. S. K. Wolkowicz, A predator-prey model in the chemostat with holling type Ⅱ response function, Mathematics in Applied Sciences and Engineering, 2020, 1(4), 333–354.

    Google Scholar

    [3] P. De Maesschalck, T. S. Doan and J. Wynen, Intrinsic determination of the criticality of a slow–fast hopf bifurcation, Journal of Dynamics and Differential Equations, 2021, 33, 2253–2269. doi: 10.1007/s10884-020-09903-x

    CrossRef Google Scholar

    [4] P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Transactions of the American Mathematical Society, 2006, 358(5), 2291–2334.

    Google Scholar

    [5] P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2008, 138(2), 265–299. doi: 10.1017/S0308210506000199

    CrossRef Google Scholar

    [6] P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point, Journal of Differential Equations, 2010, 248(9), 2294–2328. doi: 10.1016/j.jde.2009.11.009

    CrossRef Google Scholar

    [7] P. De Maesschalck, F. Dumortier and R. Roussarie, Canard cycle transition at a slow–fast passage through a jump point, Comptes Rendus Mathematique, 2014, 352(4), 317–320. doi: 10.1016/j.crma.2014.02.008

    CrossRef Google Scholar

    [8] P. De Maesschalck and S. Schecter, The entry-exit function and geometric singular perturbation theory, Journal of Differential Equations, 2016, 260(8), 6697–6715. doi: 10.1016/j.jde.2016.01.008

    CrossRef Google Scholar

    [9] F. Dumortier and R. Roussarie, Birth of canard cycles, Discrete & Continuous Dynamical Systems-S, 2009, 2(4), 723.

    Google Scholar

    [10] N. Fenichel, Asymptotic stability with rate conditions, Indiana University Mathematics Journal, 1974, 23(12), 1109–1137. doi: 10.1512/iumj.1974.23.23090

    CrossRef Google Scholar

    [11] N. Fenichel, Asymptotic stability with rate conditions, Ⅱ, Indiana University Mathematics Journal, 1977, 26(1), 81–93. doi: 10.1512/iumj.1977.26.26006

    CrossRef Google Scholar

    [12] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of differential equations, 1979, 31(1), 53–98. doi: 10.1016/0022-0396(79)90152-9

    CrossRef Google Scholar

    [13] N. Fenichel and J. K. Moser, Persistence and smoothness of invariant manifolds for flows, Indiana University Mathematics Journal, 1971, 21(3), 193–226. doi: 10.1512/iumj.1972.21.21017

    CrossRef Google Scholar

    [14] G. F. Fussmann, S. P. Ellner, K. W. Shertzer and N. G. Hairston Jr., Crossing the hopf bifurcation in a live predator-prey system, Science, 2000, 290(5495), 1358–1360. doi: 10.1126/science.290.5495.1358

    CrossRef Google Scholar

    [15] T. H. Hsu and S. G. Ruan, Relaxation oscillations and the entry-exit function in multidimensional slow-fast systems, SIAM Journal on Mathematical Analysis, 2021, 53(4), 3717–3758. doi: 10.1137/19M1295507

    CrossRef Google Scholar

    [16] B. W. Kooi, M. P. Boer and S. Kooijman, Consequences of population models for the dynamics of food chains, Mathematical biosciences, 1998, 153(2), 99–124. doi: 10.1016/S0025-5564(98)10037-8

    CrossRef Google Scholar

    [17] B. W. Kooi, D. Bontje, G. A. K. Van Voorn and S. Kooijman, Sublethal toxic effects in a simple aquatic food chain, Ecological modelling, 2008, 212(3–4), 304–318. doi: 10.1016/j.ecolmodel.2007.10.042

    CrossRef Google Scholar

    [18] B. W. Kooi and J. C. Poggiale, Modelling, singular perturbation and bifurcation analyses of bitrophic food chains, Mathematical biosciences, 2018, 301, 93–110. doi: 10.1016/j.mbs.2018.04.006

    CrossRef Google Scholar

    [19] B. W. Kooi, J. C. Poggiale, P. Auger and S. Kooijman, Aggregation methods in food chains with nutrient recycling, Ecological Modelling, 2002, 157(1), 69–86. doi: 10.1016/S0304-3800(02)00217-X

    CrossRef Google Scholar

    [20] M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM journal on mathematical analysis, 2001, 33(2), 286–314. doi: 10.1137/S0036141099360919

    CrossRef Google Scholar

    [21] M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, Journal of Differential Equations, 2001, 174(2), 312–368. doi: 10.1006/jdeq.2000.3929

    CrossRef Google Scholar

    [22] Y. Kuang, Limit cycles in a chemostat-related model, SIAM Journal on Applied Mathematics, 1989, 49(6), 1759–1767. doi: 10.1137/0149107

    CrossRef Google Scholar

    [23] J. C. Poggiale, P. Auger, F. Cordoléani and T. Nguyen-Huu, Study of a virus–bacteria interaction model in a chemostat: Application of geometrical singular perturbation theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1908), 4685–4697. doi: 10.1098/rsta.2009.0132

    CrossRef Google Scholar

    [24] C. Wang and X. Zhang, Stability loss delay and smoothness of the return map in slow-fast systems, SIAM Journal on Applied Dynamical Systems, 2018, 17(1), 788–822. doi: 10.1137/17M1130010

    CrossRef Google Scholar

    [25] M. Wechselberger, Existence and bifurcation of canards in ${R^3}$ in the case of a folded node, SIAM Journal on Applied Dynamical Systems, 2005, 4(1), 101–139. doi: 10.1137/030601995

    CrossRef Google Scholar

    [26] G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence, SIAM Journal on Applied Mathematics, 1988, 48(3), 592–606. doi: 10.1137/0148033

    CrossRef Google Scholar

Figures(1)

Article Metrics

Article views(624) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint