We present an effective procedure to construct the 1‐soliton Darboux matrix. Our approach, based on the Zakharov–Shabat–Mikhailov’s dressing method, is especially useful in the case of non‐canonical normalization and for non‐isospectral linear problems. The construction is divided into two steps. First, we represent a given linear problem as a system of some algebraic constraints on two matrices. In this context we introduce and discuss invariants of the Darboux matrix. Second, we derive the Darboux matrix demanding that it preserves the algebraic constraints. In particular, we consider in details the restrictions imposed by various reduction groups on the form of the Darboux matrix.

1.
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).
2.
V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaievsky, Theory of solitons (Nauka, Moscow, 1980) [in Russian].
3.
V. E.
Zakharov
and
A. V.
Mikhailov
, “
Relativistically invariant systems integrable by the inverse scattering method
,“
ZhETF
74
,
1953
1973
(
1978
) [in Russian].
4.
V. E.
Zakharov
and
A. B.
Shabat
, “
Integration of nonlinear equations of mathematical physics by the inverse scattering method. II
,”
Funk. Anal. Pril.
13
,
13
22
(
1979
) [in Russian].
5.
D.
Levi
,
O.
Ragnisco
, and
M.
Bruschi
, “
Extension of the Zakharov-Shabat Generalized Inverse Method to Solve Differential-Difference and Difference-Difference Equations
,”
Nuovo Cimento A
58
,
56
66
(
1980
).
6.
A.
Sym
, “
Soliton Surfaces
,”
Lett. Nuovo Cimento
33
,
394
400
(
1982
).
7.
A. Sym, “Soliton surfaces and their applications,” in Geometric Aspects of the Einstein Equations and Integrable Systems, Lecture Notes in Physics, No. 239, edited by R. Martini (Springer-Verlag, Berlin, 1985), pp. 154–231.
8.
V. E.
Zakharov
and
A. V.
Mikhailov
, “
On the Integrability of Classical Spinor Models in Two-dimensional Space-Time
,”
Commun. Math. Phys.
74
,
21
40
(
1980
).
9.
A. V.
Mikhailov
, “
Reductions in integrable systems. The reduction group
,”
Pis’ma ZhETF
32
,
187
192
(
1980
) [in Russian].
10.
A. V.
Mikhailov
, “
The reduction problem and the inverse scattering method
,”
Physica D
3
,
73
117
(
1981
).
11.
D.
Levi
,
A.
Sym
, and
S.
Wojciechowski
, “
A hierarchy of coupled Korteweg-de Vries equations and the normalisation conditions of the Hilbert-Riemann problem
,”
J. Phys. A
16
,
2423
2432
(
1983
).
12.
S. P.
Burtsev
,
V. E.
Zakharov
, and
A. V.
Mikhailov
, “
Inverse scattering method with variable spectral parameter
,”
Teor. Mat. Fiz.
70
,
323
341
(
1987
) [in Russian].
13.
J. Cieśliński, “The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton ap proach,” IP-WUD preprint No. 15, Bialystok, 1994.
14.
J. Cieśliński, “Zastosowania geometrii solitonów,” Ph.D. thesis, Department of Physics of Warsaw University, Warsaw, 1992 [in Polish],
15.
J. Cieśliński, “A new approach to the Darboux-Bäcklund transformation and its application to the Bianchi system,” IP-WUD preprint No. 13, Białystok 1992.
16.
J. Cieśliński, “Algebraic representation of the linear problem as a method to construct the Darboux-Bäcklund transformation,” Chaos, Solitons and Fractals 5 (1995) (Special Issue on Solitons) (in press).
17.
J.
Cieśliński
, “
Non-isospectral deformations of the Heisenberg ferromagnet equation
,”
Phys. Lett. A
149
,
139
143
(
1990
).
18.
G.
Neugebauer
and
D.
Kramer
, “
Einstein-Maxwell solitons
,”
J. Phys. A
16
,
1927
1936
(
1983
).
19.
V. B.
Matveev
, “
Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters
,”
Lett. Math. Phys.
3
,
213
216
(
1979
).
20.
D.
Levi
,
O.
Ragnisco
, and
A.
Sym
, “
Dressing Method vs. Classical Darboux Transformation
,”
Nuovo Cimento B
83
,
34
41
(
1984
).
21.
V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer-Verlag, Berlin, 1991).
22.
J. Cieśliński, “Geometric method of integration of inhomogeneous Heisenberg chain,” in Nonlinear Evolution Equations: Integrability and Spectral Methods (Proceedings of NEE conference, Como (Italy), July 1988), edited by A. Degasperis, A. P. Fordy, M. Lakshmanan (Manchester University, Manchester, 1990), pp. 295–305.
23.
G.
Neugebauer
and
R.
Meinel
, “
General N-soliton solution of the AKNS class on arbitrary background
,”
Phys. Lett. A
100
,
467
470
(
1984
).
24.
R. Meinel, G. Neugebauer, and H. Steudel, Solitonen. Nichtlineare Strukturen (Academie Verlag, Berlin, 1991) [in German].
25.
J.
Cieśliński
, “
An effective method to compute N-soliton Darboux matrix and N-soliton surfaces
,”
J. Math. Phys.
32
,
2395
2399
(
1991
).
26.
A. O. Barut and R. Raczka, Theory of Group Representations and Applications, PWN, Warsaw, 1977.
27.
R. J.
Arms
and
F. R.
Hama
, “
Localized-Induction Concept on a Curved Vortex and Motion of an Elliptic Vortex Ring
,”
Phys. Fluids
8
,
553
559
(
1965
).
28.
A.
Sym
, “
Soliton Surfaces II. Geometric Unification of Solvable Nonlinearities
,”
Lett. Nuovo Cimento
36
,
307
312
(
1983
).
29.
A.
Sym
,
O.
Ragnisco
,
D.
Levi
, and
M.
Bruschi
, “
Soliton Surfaces VII. Relativistic String in External Field: General Integral and Particular Solutions
,”
Lett. Nuovo Cimento
44
,
529
536
(
1985
).
30.
A.
Sym
, “
Soliton Surfaces V. Geometric Theory of Loop Solitons
,”
Lett. Nuovo Cimento
41
,
33
(
1984
).
31.
K.
Konno
and
A.
Jeffrey
, “
Some Remarkable Properties of Two Loop Soliton Solutions
,”
J. Phys. Soc. Jpn.
52
,
1
3
(
1983
).
32.
J. Cieśliński, “Lie symmetries as a tool to isolate integrable geometries,” in Nonlinear Evolution Equations and Dynamical Systems (Proceedings of the 7th NEEDS conference, Baia Verde, Gallipoli (Italy), June 1991), edited by M. Boiti, L. Martina, and L. Pempinelli (World Scientific, Singapore, 1992), pp. 260–268.
33.
A. I. Bobenko, “Surfaces in Terms of 2 by 2 Matrices. Old and New Integrable Cases,” in Harmonic maps and integrable systems (Aspects of Mathematics, Vol. 23), edited by A. P. Fordy and J. C. Wood (Vieweg, 1994).
34.
J. Cieśliński, P. Goldstein, and A. Sym, “Isothermic surfaces in E3 as soliton surfaces,” preprint IFT/15/94, Warsaw, 1994; Phys. Lett. A (in press).
35.
D.
Levi
,
A.
Sym
, and
S.
Wojciechowski
, “
N-Solitons on a Vortex Filament
,”
Phys. Lett. A
94
,
408
411
(
1983
).
36.
J.
Cieśliński
,
P. K. H.
Gragert
, and
A.
Sym
, “
Exact Solution to Localized-Induction-Approximation Equation Modelling Smoke Ring Motion
,”
Phys. Rev. Lett.
57
,
1507
1510
(
1986
).
37.
R.
Balakrishnan
,“
On the inhomogeneous Heisenberg chain
,”
J. Phys. C
15
,
L1305
-
L1308
(
1982
).
38.
M.
Lakshmanan
and
S.
Ganesan
, “
Geometrical and gauge equivalence of the generalized Hirota, Heisenberg and WKIS equations with linear inhomogeneities
,”
Physica A
132
,
117
142
(
1985
).
39.
J.
Cieśliński
,
A.
Sym
, and
W.
Wesselius
, “
On the geometry of the inhomogeneous Heisenberg ferromagnet: non-integrable case
,”
J. Phys. A
26
,
1353
1364
(
1993
).
40.
F.
Calogero
and
A.
Degasperis
, “
Exact Solution Via the Spectral Transform of a Generalization with Linearly x-dependent Coefficients of the Nonlinear Schrödinger Equation
,”
Lett. Nuovo Cimento
22
,
420
424
(
1978
).
41.
M.
Lakshmanan
and
R. K.
Bullough
, “
Geometry of generalized nonlinear Schrödinger and Heisenberg ferromagnetic spin equations with linearly x-dependent coefficients
,”
Phys. Lett. A
80
,
287
292
(
1980
).
42.
J.
Cieśliński
,
P.
Goldstein
, and
A.
Sym
, “
On integrability of the inhomogeneous Heisenberg ferromagnet model: examination of a new test
,”
J. Phys. A
27
,
1645
1664
(
1994
).
43.
L. Bianchi, Lezioni di Geometria Differenziale, Vol. II (Spoerri, Pisa, 1903) [in Italian].
44.
D.
Levi
and
A.
Sym
, “
Integrable systems describing surfaces of non-constant curvature
,”
Phys. Lett. A
149
,
381
387
(
1990
).
45.
M. V.
Tratnik
and
J. E.
Sipe
, “
Polarization Solitons
,”
Phys. Rev. Lett.
58
,
1104
1107
(
1987
).
46.
J. Tafel, “Surfaces in R3 with prescribed curvature,” J. Geom. Phys. (to be published).
47.
F. Calogero and A. Degasperis, Spectral Transform and Solitons, Vol. 1 (North-Holland, Amsterdam, 1982).
48.
L. Bianchi, “Ricerche sulle superficie isoterme and sulla deformazione delle quadriche,” Annali di Matematica 1905, serie III, tomo XI, pp. 93–157 [in Italian],
49.
F. Burstall, U. Hertrich-Jeromin, F. Pedit, and U. Pinkall, “Curved Flats and Isothermic Surfaces,” Sfb 288 preprint No. 132, Berlin, 1994.
50.
A. Bobenko and U. Pinkall, “Discrete Isothermic Surfaces,” Sfb 288 preprint No. 143, Berlin, 1994.
This content is only available via PDF.
You do not currently have access to this content.