×

On the limitations of low-rank approximations in contact mechanics problems. (English) Zbl 1534.74045

Summary: Typical strategies for reducing the computational cost of contact mechanics models use low-rank approximations. The underlying hypothesis is the existence of a low-dimensional subspace for the displacement field and a non-negative low-dimensional subcone for the contact pressure. However, given the local nature of contact, it seems natural to wonder whether low-rank approximations are a good fit for contact mechanics or not. In this article, we investigate some of their limitations and provide numerical evidence showing that contact pressure is linearly inseparable in many practical cases. To this end, we consider various mechanical problems involving nonadhesive frictionless contacts and analyze the performance of the low-rank models in terms of three different criteria, namely, compactness, generalization, and specificity.
{© 2022 John Wiley & Sons Ltd.}

MSC:

74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

NumPy; SciPy; Gmsh; Matplotlib
Full Text: DOI

References:

[1] McBaneS, ChoiY. Component‐wise reduced order model lattice‐type structure design. Comput Methods Appl Mech Eng. 2021;381:113813. doi:10.1016/j.cma.2021.113813 · Zbl 1506.74290
[2] FreitasFD, PulchR, RommesJ. Fast and accurate model reduction for spectral methods in uncertainty quantification. Int J Uncertain Quantif. 2016;6(3):271‐286. · Zbl 1498.65017
[3] GonzálezD, MassonF, PoulhaonF, LeygueA, CuetoE, ChinestaF. Proper generalized decomposition based dynamic data driven inverse identification. Math Comput Simul. 2012;82(9):1677‐1695. doi:10.1016/j.matcom.2012.04.001
[4] KärcherM, TokoutsiZ, GreplMA, VeroyK. Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J Sci Comput. 2017;75(1):276‐307. doi:10.1007/s10915‐017‐0539‐z · Zbl 1388.49023
[5] ModestoD, ZlotnikS, HuertaA. Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. Comput Methods Appl Mech Eng. 2015;295:127‐149. doi:10.1016/j.cma.2015.03.026 · Zbl 1423.76261
[6] QuarteroniA, ManzoniA, NegriF. Reduced Basis Methods for Partial Differential Equations. Vol. 92 of UNITEXT. Springer International Publishing; 2016. · Zbl 1337.65113
[7] HesthavenJS, RozzaG, StammB. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer International Publishing; 2016. · Zbl 1329.65203
[8] QuarteroniA, RozzaG. Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer Methods Part Differ Equ. 2007;23(4):923‐948. doi:10.1002/num.20249 · Zbl 1178.76238
[9] HaasdonkB, SalomonJ, WohlmuthB. A reduced basis method for parametrized variational inequalities. SIAM J Numer Anal. 2012;50(5):2656‐2676. doi:10.1137/110835372 · Zbl 1261.65069
[10] BurkovskaO, HaasdonkB, SalomonJ, WohlmuthB. Reduced basis methods for pricing options with the Black-Scholes and Heston models. SIAM J Financ Math. 2015;6(1):685‐712. doi:10.1137/140981216 · Zbl 1335.91099
[11] BalajewiczM, AmsallemD, FarhatC. Projection‐based model reduction for contact problems. Int J Numer Methods Eng. 2016;106(8):644‐663. doi:10.1002/nme.5135 · Zbl 1352.74196
[12] BaderE, ZhangZ, VeroyK. An empirical interpolation approach to reduced basis approximations for variational inequalities. Math Comput Model Dyn Syst. 2016;22(4):345‐361. doi:10.1080/13873954.2016.1198388 · Zbl 1351.49034
[13] FauqueJ, RamièreI, RyckelynckD. Hybrid hyper‐reduced modeling for contact mechanics problems. Int J Numer Methods Eng. 2018;115(1):117‐139. doi:10.1002/nme.5798 · Zbl 07864831
[14] BenaceurA, ErnA, EhrlacherV. A reduced basis method for parametrized variational inequalities applied to contact mechanics. Int J Numer Methods Eng. 2020;121(6):1170‐1197. doi:10.1002/nme.6261 · Zbl 07843242
[15] ManvelyanD, SimeonB, WeverU. An efficient model order reduction scheme for dynamic contact in linear elasticity. Comput Mech. 2021;68(6):1283‐1295. doi:10.1007/s00466‐021‐02068‐4 · Zbl 1479.74093
[16] OdenJ, KikuchiN. Theory of variational inequalities with applications to problems of flow through porous media. Int J Eng Sci. 1980;18(10):1173‐1284. doi:10.1016/0020‐7225(80)90111‐1 · Zbl 0444.76069
[17] KinderlehrerD, StampacchiaG. An Introduction to Variational Inequalities and Their Applications. Society for Industrial and Applied Mathematics; 2000. · Zbl 0988.49003
[18] SofoneaM, MateiA. Variational Inequalities with Applications. Advances in Mechanics and Mathematics. Vol 18. Springer; 2009. · Zbl 1195.49002
[19] WriggersP. Computational Contact Mechanics. Springer; 2006. · Zbl 1104.74002
[20] DaviesRH. Learning Shape: Optimal Models for Analysing Natural Variability. PhD thesis. University of Manchester; 2002.
[21] FischerKA, WriggersP. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng. 2006;195(37‐40):5020‐5036. doi:10.1016/j.cma.2005.09.025 · Zbl 1118.74047
[22] HallquistJ, GoudreauG, BensonD. Sliding interfaces with contact‐impact in large‐scale Lagrangian computations. Comput Methods Appl Mech Eng. 1985;51(1):107‐137. doi:10.1016/0045‐7825(85)90030‐1 · Zbl 0567.73120
[23] WriggersP, SimoJC. A note on tangent stiffness for fully nonlinear contact problems. Commun Appl Numer Methods. 1985;1(5):199‐203. doi:10.1002/cnm.1630010503 · Zbl 0582.73110
[24] ChoulyF, FabreM, HildP, MlikaR, PousinJ, RenardY. An overview of recent results on Nitsche’s method for contact problems. In: BordasS (ed.), BurmanE (ed.), LarsonM (ed.), OlshanskiiM (ed.), eds. Geometrically Unfitted Finite Element Methods and Application. Springer; 2017:93‐141. · Zbl 1390.74003
[25] LeeDD, SeungHS. Learning the parts of objects by non‐negative matrix factorization. Nature. 1999;401:788‐791. doi:10.1038/44565 · Zbl 1369.68285
[26] HarrisCR, MillmanKJ, Van Der WaltSJ, et al. Array programming with NumPy. Nature. 2020;585(7825):357‐362. doi:10.1038/s41586‐020‐2649‐2
[27] VirtanenP, GommersR, OliphantT, et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 2020;17:261‐272. doi:10.1038/s41592‐019‐0686‐2
[28] HunterJD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90‐95. doi:10.1109/MCSE.2007.55
[29] GeuzaineC, RemacleJF. Gmsh: a 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. Int J Numer Methods Eng. 2008;79:1309‐1331. · Zbl 1176.74181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.