×

The role of quantum correlations in cop and robber game. (English) Zbl 1425.91080

Summary: We introduce and study quantized versions of Cop and Robber game. We achieve this by using graph-preserving quantum operations, which are the quantum analogues of stochastic operations preserving the graph. We provide the tight bound for the number of operations required to reach the given state. By extending them to the controlled operations, we define a quantum-controlled Cop and Robber game, which expands the classical Cop and Robber game, as well as the classically controlled quantum Cop and Robber game. In contrast to the typical scheme for introducing quantum games, we assume that both parties can utilise full information about the opponent’s strategy. We show that the utilisation of the full knowledge about the opponent’s state does not provide the advantage. Moreover, the chances of catching the Robber decrease for classical cop-win graphs. This result does not depend on the chosen model of evolution. On the other hand, the possibility to execute controlled quantum operations allows catching the Robber on almost all classical cop-win graphs. By this, we demonstrate that it is necessary to enrich the structure of correlations between the players’ systems to provide a non-trivial quantized Cop and Robber game. Thus the quantum controlled operations offer a significant advantage over the classically controlled quantum operations.

MSC:

91A46 Combinatorial games
05C57 Games on graphs (graph-theoretic aspects)
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Miszczak, J.A.: High-level structures for quantum computing. Synth. Lect. Quantum Comput. 4(1), 1-129 (2012). https://doi.org/10.2200/S00422ED1V01Y201205QMC006 · doi:10.2200/S00422ED1V01Y201205QMC006
[2] Quilliot, A.: Jeux et pointes fixes sur les graphes. PhD thesis, Ph. D. Dissertation, Université de Paris VI, (1978)
[3] Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math. 43(2-3), 235-239 (1983). https://doi.org/10.1016/0012-365X(83)90160-7 · Zbl 0508.05058 · doi:10.1016/0012-365X(83)90160-7
[4] Bernhard, P., Colomb, A.-L., Papavassilopoulos, G.: Rabbit and hunter game: two discrete stochastic formulations. Comput. Math. Appl. 13(1-3), 205-225 (1987). https://doi.org/10.1016/0898-1221(87)90105-2 · Zbl 0623.90105 · doi:10.1016/0898-1221(87)90105-2
[5] Konstantinidis, G., Kehagias, A.: Simultaneously moving cops and robbers. Theor. Comput. Sci. 645, 48-59 (2016). https://doi.org/10.1016/j.tcs.2016.06.039 · Zbl 1349.05236 · doi:10.1016/j.tcs.2016.06.039
[6] Bonato, A., Mitsche, D., Pérez-Giménez, X., Prałat, P.: A probabilistic version of the game of zombies and survivors on graphs. Theor. Comput. Sci. 655, 2-14 (2016). https://doi.org/10.1016/j.tcs.2015.12.012 · Zbl 1353.05084 · doi:10.1016/j.tcs.2015.12.012
[7] Fitzpatrick, S., Howell, J., Messinger, M., Pike, D.: A deterministic version of the game of zombies and survivors on graphs. Discret. Appl. Math. 213, 1-12 (2016). https://doi.org/10.1016/j.dam.2016.06.019 · Zbl 1344.05096 · doi:10.1016/j.dam.2016.06.019
[8] Fitzgerald, C.H.: The princess and monster differential game. SIAM J. Control Optim. 17(6), 700-712 (1979). https://doi.org/10.1137/0317049 · Zbl 0437.90119 · doi:10.1137/0317049
[9] Alpern, S., Fokkink, R., Lindelauf, R., Olsder, G.-J.: The princess and monster game on an interval. SIAM J. Control Optim. 47(3), 1178-1190 (2008). https://doi.org/10.1137/060672054 · Zbl 1162.91008 · doi:10.1137/060672054
[10] Boyer, M., El Harti, S., El Ouarari, A., Ganian, R., Gavenčiak, T., Hahn, G., Moldenauer, C., Rutter, I., Thériault, B. and Vatshelle, M.: Cops-and-robbers: remarks and problems. J. Combin. Math. Combin. Comput. 82, 141-159 (2013) · Zbl 1274.05318
[11] Frankl, P.: Cops and robbers in graphs with large girth and Cayley graphs. Discret. Appl. Math. 17(3), 301-305 (1987). https://doi.org/10.1016/0166-218X(87)90033-3 · Zbl 0624.05041 · doi:10.1016/0166-218X(87)90033-3
[12] Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robot. 31(4), 299 (2011). https://doi.org/10.1007/s10514-011-9241-4 · doi:10.1007/s10514-011-9241-4
[13] Bonato, A. and Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511-1558. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4419-7997-1_76
[14] Bonato, A., Prałat, P., Wang, C.: Pursuit-evasion in models of complex networks. Internet Math. 4(4), 419-436 (2007). https://doi.org/10.1080/15427951.2007.10129149 · Zbl 1206.68030 · doi:10.1080/15427951.2007.10129149
[15] Bonato, A., Nowakowski, R.J.: The game of cops and robbers on graphs, vol. 61. American Mathematical Society, Providence (2011). ISBN:ISBN 978-0-8218-5347. https://doi.org/10.1090/stml/061 · Zbl 1298.91004
[16] Piotrowski, E.W., Sładkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089-1099 (2003). https://doi.org/10.1023/A:1025443111388 · Zbl 1037.81020 · doi:10.1023/A:1025443111388
[17] Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999). https://doi.org/10.1103/PhysRevLett.83.3077 · Zbl 0946.81018 · doi:10.1103/PhysRevLett.83.3077
[18] Pawela, Ł., Sładkowski, J.: Cooperative quantum parrondos games. Phys. D Nonlinear Phenom. 256, 51-57 (2013). https://doi.org/10.1016/j.physd.2013.04.010 · Zbl 1294.91043 · doi:10.1016/j.physd.2013.04.010
[19] Hao, W., Chao-Wei, D., Bao-Fu, F.: A novel multi pursuers-one evader game based on quantum game theory. Inf. Technol. J. 12(12), 2358 (2013). https://doi.org/10.3923/itj.2013.2358.2365 · doi:10.3923/itj.2013.2358.2365
[20] Miszczak, J.A., Sadowski, P.: Quantum network exploration with a faulty sense of direction. Quantum Inf. Comput. 14(13-14), 1238-1250 (2014)
[21] Sadowski, P., Miszczak, J.A., Ostaszewski, M.: Lively quantum walks on cycles. J. Phys. A Math. Theor. 49(37), 375302 (2016). https://doi.org/10.1088/1751-8113/49/37/375302 · Zbl 1348.81145 · doi:10.1088/1751-8113/49/37/375302
[22] Dorbec, P., Mhalla, M.: Quantum combinatorial games. In: 14th International Conference on Quantum Physics and Logic (QPL 2017) (2017). arXiv:1701.02193 · Zbl 1486.91020
[23] Condon, A.: On algorithms for simple stochastic games. In: Advances in computational complexity theory, pp. 51-72 (1990) · Zbl 0808.90141
[24] Montanaro, A.: Quantum walks on directed graphs. Quantum Inf. Comput. 7(1), 93-102 (2007) · Zbl 1152.81781
[25] Bonato, A., Kemkes, G., Prałat, P.: Almost all cop-win graphs contain a universal vertex. Discret. Math. 312(10), 1652-1657 (2012). https://doi.org/10.1016/j.disc.2012.02.018 · Zbl 1242.05178 · doi:10.1016/j.disc.2012.02.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.