×

Statistical inference for persistent homology applied to simulated fMRI time series data. (English) Zbl 07805166

Summary: Time-series data are amongst the most widely-used in biomedical sciences, including domains such as functional Magnetic Resonance Imaging (fMRI). Structure within time series data can be captured by the tools of topological data analysis (TDA). Persistent homology is the mostly commonly used data-analytic tool in TDA, and can effectively summarize complex high-dimensional data into an interpretable 2-dimensional representation called a persistence diagram. Existing methods for statistical inference for persistent homology of data depend on an independence assumption being satisfied. While persistent homology can be computed for each time index in a time-series, time-series data often fail to satisfy the independence assumption. This paper develops a statistical test that obviates the independence assumption by implementing a multi-level block sampled Monte Carlo test with sets of persistence diagrams. Its efficacy for detecting task-dependent topological organization is then demonstrated on simulated fMRI data. This new statistical test is therefore suitable for analyzing persistent homology of fMRI data, and of non-independent data in general.

MSC:

62R40 Topological data analysis
55N31 Persistent homology and applications, topological data analysis

Software:

neuRosim
Full Text: DOI

References:

[1] S. Benzekry, J. A. Tuszynski, E. A. Rietman and G. L. Klement, Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks, Biology Direct, 10 (2015), Article number: 32.
[2] S. L. A. K. Bressler Seth, Wiener-granger causality: A well established methodology, NeuroImage, 58, 323-329 (2011) · doi:10.1016/j.neuroimage.2010.02.059
[3] P. M. D. B. Bubenik Hull Patel Whittle, Persistent homology detects curvature, Inverse Problems, 36, 025008 (2020) · Zbl 1508.55004 · doi:10.1088/1361-6420/ab4ac0
[4] C. I. J. M. J. J. Cericola Johnson Kiers Krock Purdy Torrence, Extending hypothesis testing with persistent homology to three or more groups, Involve, 11, 27-51 (2018) · Zbl 1373.62270 · doi:10.2140/involve.2018.11.27
[5] F. M. C. B. Chazal Glisse Labruère Michel, Convergence rates for persistence diagram estimation in topological data analysis, Journal of Machine Learning Research, 16, 3603-3635 (2015) · Zbl 1351.62009
[6] F. Chazal and B. Michel, An introduction to topological data analysis: Fundamental and practial aspects for data scientists, Frontiers in Artificial Intelligence, 29 (2021).
[7] T. K. Y. Dey Wang, Computational Topology for Data Analysis (2022) · Zbl 1498.57001 · doi:10.1017/9781009099950
[8] H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. · Zbl 1193.55001
[9] A. Eklund, T. Nichols and H. Knutsson, Can parametric statistical methods be trusted for fMRI based group studies?, arXiv preprint, arXiv: 1511.01863, 11 (2015).
[10] K. J. K. H. C. H. J. A. P. Friston Preller Mathys Cagnan Heinzle Razi Zeidman, Dynamic causal modelling revisited, NeuroImage, 199, 730-744 (2019) · doi:10.1016/j.neuroimage.2017.02.045
[11] A. Hatcher, Algebraic Topology (2002) · Zbl 1044.55001
[12] H. A. S. J. J. M. A. Honari Choe Pekar Lindquist, Investigating the impact of autocorrelation on time-varying connectivity, NeuroImage, 197, 37-48 (2019) · doi:10.1016/j.neuroimage.2019.04.042
[13] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart., 2, 83-97 (1955) · Zbl 0143.41905 · doi:10.1002/nav.3800020109
[14] P.-J. J.-B. G. S. L. Lahaye Poline Flandin Dodel Garnero, Functional connectivity: Studying nonlinear, delayed interactions between BOLD signals, NeuroImage, 20, 962-974 (2003) · doi:10.1016/S1053-8119(03)00340-9
[15] G. Lohmann, J. Stelzer, E. Lacosse, V. J. Kumar, K. Mueller, E. Kuehn, W. Grodd and K. Scheffler, LISA improves statistical analysis for fMRI, Nature Communications, 9 (2018).
[16] B. J. R. W. E. S. J. Macintosh Mraz McIlroy Graham, Brain activity during a motor learning task: An fMRI and skin conductance study, Human Brain Mapping, 28, 1359-1367 (2007) · doi:10.1002/hbm.20351
[17] Y. I. R. D. J. Nir Dinstein Malach Heeger, Bold and spiking activity, Nature Neuroscience, 11, 523-524 (2008) · doi:10.1038/nn0508-523
[18] C. A. D. S. P. J. V. Oballe Cherne Boothe Kerick Franaszczuk Maroulas, Bayesian topological signal processing, Discrete Contin. Dyn. Syst. Ser. S, 15, 797-817 (2022) · Zbl 1500.55005 · doi:10.3934/dcdss.2021084
[19] N. M. A. U. P. H. A. Otter Porter Tillmann Grindrod Harrington, A roadmap for the computation of persistent homology, EPJ Data Science, 6, 1-38 (2017) · doi:10.1140/epjds/s13688-017-0109-5
[20] J. A. Perea, A brief history of persistence, Morfismos, 23, 1-16 (2019)
[21] J. A. Perea, Topological times series analysis, Notices Amer. Math. Soc., 66, 686-694 (2019) · Zbl 1416.37067
[22] J. A. J. Perea Harer, Sliding windows and persistence: An application of topological methods to signal analysis, Found. Comput. Math., 15, 799-838 (2015) · Zbl 1325.37054 · doi:10.1007/s10208-014-9206-z
[23] N. Ravishanker and R. Chen, An introduction to persistent homology for time series, Wiley Interdiscip. Rev. Comput. Stat., 13 (2021), Paper No. e1548, 25 pp. · Zbl 07910745
[24] A. K. Robinson Turner, Hypothesis testing for topological data analysis, Journal of Applied and Computational Topology, 1, 241-261 (2017) · Zbl 1396.62085 · doi:10.1007/s41468-017-0008-7
[25] A. Salch, A. Regalski, H. Abdallah, R. Suryadevara, M. J. Catanzaro and V. A. Diwadkar, From mathematics to medicine: A practical primer on topological data analysis (TDA) and the development of related analytic tools for the functional discovery of latent structure in fMRI data, PLoS ONE, 16 (2021), e0255859.
[26] L. M. Seversky, S. Davis and M. Berger, On time-series topological data analysis: New data and opportunities, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2016), 59-67.
[27] K. E. A. Stephan Roebroeck, A short history of causal modeling of fMRI data, NeuroImage, 62, 856-863 (2012) · doi:10.1016/j.neuroimage.2012.01.034
[28] L. Wasserman, Topological data analysis, Annu. Rev. Stat. Appl., 5, 501-535 (2018) · doi:10.1146/annurev-statistics-031017-100045
[29] M. J. B. G. Y. Welvaert Durnez Moerkerke Verdoolaege Rosseel, neuRosim: An R package for generating fMRI data, Journal of Statistical Software, 44, 1-18 (2011) · doi:10.18637/jss.v044.i10
[30] M. Welvaert and Y. Rosseel, On the definition of signal-to-noise ratio and contrast-to-noise ratio for fmri data, PLoS ONE, 8 (2013), e77089, 11.
[31] A. M. M. A. D. T. E. S. M. Winkler Webster Vidaurre Nichols Smith, Multi-level block permutation, NeuroImage, 123, 253-268 (2015) · doi:10.1016/j.neuroimage.2015.05.092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.