×

Convergence analysis for a finite element approximation of a steady model for electrorheological fluids. (English) Zbl 1457.65180

Summary: In this paper we study the finite element approximation of systems of \({p(\cdot )}\)-Stokes type, where \({p(\cdot )}\) is a (non constant) given function of the space variables. We derive – in some cases optimal – error estimates for finite element approximation of the velocity and of the pressure, in a suitable functional setting.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J60 Nonlinear elliptic equations
76A05 Non-Newtonian fluids
78A30 Electro- and magnetostatics
76M10 Finite element methods applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics

References:

[1] Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal 164, 213-259 (2002) · Zbl 1038.76058 · doi:10.1007/s00205-002-0208-7
[2] Bao, W., Barrett, J.W.: A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-Newtonian flow. RAIRO Modél. Math. Anal. Numér. 32, 843-858 (1998) · Zbl 0912.76025
[3] Barrett, J.W., Liu, W.B.: Finite element approximation of the \[p\] p-Laplacian. Math. Comput. 61(204), 523-537 (1993) · Zbl 0791.65084
[4] Barrett, J.W., Liu, W.B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68(4), 437-456 (1994) · Zbl 0811.76036 · doi:10.1007/s002110050071
[5] Belenki, L., Berselli, L.C., Diening, L., Růžička, M.: On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50(2), 373-397 (2012) · Zbl 1426.76221 · doi:10.1137/10080436X
[6] Bildhauer, M., Fuchs, M.: A regularity result for stationary electrorheological fluids in two dimensions. Math. Methods Appl. Sci. 27(13), 1607-1617 (2004) · Zbl 1058.76073 · doi:10.1002/mma.527
[7] Bildhauer, M., Fuchs, M., Zhong, X.: On strong solutions of the differential equations modelling the steady flow of certain incompressible generalized Newtonian fluids. Algebra i Analiz 18, 1-23 (2006). [St. Petersburg Math. J. 18, 183-199 (2007)] · Zbl 1129.35061
[8] Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamic of Polymer Liquids, 2nd edn. Wiley, New York (1987) · Zbl 1313.76079
[9] Beirão da Veiga, H., Kaplický, P., Růžička, M.: Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13(3), 387-404 (2011) · Zbl 1270.35360
[10] Breit, D.: Smoothness properties of solutions to the nonlinear Stokes problem with non-autonomous potentials. Comment. Math. Univ. Carol. 54, 493-508 (2013) · Zbl 1313.76079
[11] Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDEs. Math. Model Methods Appl. Sci. 23, 2671-2700 (2013) · Zbl 1309.76024 · doi:10.1142/S0218202513500437
[12] Breit, D., Diening, L., Schwarzacher, S.: Finite element methods for the \[p(x)\] p(x)-Laplacian. SIAM J. Numer. Anal. 53(1), 551-572 (2015) · Zbl 1312.65185 · doi:10.1137/130946046
[13] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) · Zbl 0788.73002
[14] Carelli, E., Haehnle, J., Prohl, A.: Convergence analysis for incompressible generalized Newtonian fluid flows with nonstandard anisotropic growth conditions. SIAM. J. Numer. Anal. 48(1), 164-190 (2010) · Zbl 1428.35347 · doi:10.1137/080718978
[15] Crispo, F., Grisanti, C.R.: On the \[C^{1,\gamma }(\overline{\Omega })\cap W^{2,2}(\Omega )\] C1,γ(Ω¯)∩W2,2(Ω) regularity for a class of electro-rheological fluids. J. Math. Anal. Appl. 356(1), 119-132 (2009) · Zbl 1178.35300 · doi:10.1016/j.jmaa.2009.02.013
[16] Diening, L.: Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, Albert-Ludwigs-Universität, Freiburg (2002) · Zbl 1022.76001
[17] Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20(3), 523-556 (2008) · Zbl 1188.35069 · doi:10.1515/FORUM.2008.027
[18] Diening, L., Ettwein, F., Růžička, M.: \[C^{1,\alpha }\] C1,α-regularity for electrorheological fluids in two dimensions. NoDEA Nonlinear Differ. Equ. Appl. 14(1-2), 207-217 (2007) · Zbl 1132.76301 · doi:10.1007/s00030-007-5026-z
[19] Diening, L., Hästö, P., Harjulehto, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Springer Lecture Notes, vol. 2017. Springer, Berlin (2011) · Zbl 1222.46002
[20] Diening, L., Málek, J., Steinhauer, M.: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM Control Optim. Calc. Var. 14(2), 211-232 (2008) · Zbl 1143.35037 · doi:10.1051/cocv:2007049
[21] Diening, L., Růžička, M.: Interpolation operators in Orlicz Sobolev spaces. Numer. Math. 107(1), 107-129 (2007) · Zbl 1131.46023 · doi:10.1007/s00211-007-0079-9
[22] Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34, 1064-1083 (2003) · Zbl 1050.35080 · doi:10.1137/S0036141002410988
[23] Girault, V., Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979) · Zbl 0413.65081
[24] Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969) · Zbl 0184.52603
[25] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod. Gauthier-Villars, Paris (1969) · Zbl 0189.40603
[26] Liu, W.B., Barrett, J.W.: Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM J. Numer. Anal. 33(1), 88-106 (1996) · Zbl 0846.65064 · doi:10.1137/0733006
[27] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996) · Zbl 0851.35002
[28] Málek, J., Rajagopal, K.R., Růžička, M.: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5, 789-812 (1995) · Zbl 0838.76005 · doi:10.1142/S0218202595000449
[29] Pick, L., Růžička, M.: An example of a space \[l^{p(x)}\] lp(x) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19(4), 369-371 (2001) · Zbl 1003.42013 · doi:10.1016/S0723-0869(01)80023-2
[30] Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc., New York (1991) · Zbl 0724.46032
[31] Reshetnyak, Y.G.: Estimates for certain differential operators with finite-dimensional kernel. Sib. Math. J. 11, 315-326 (1970) · Zbl 0233.35010 · doi:10.1007/BF00967305
[32] Rajagopal, K.R., Růžička, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23, 401-407 (1996) · Zbl 0890.76007 · doi:10.1016/0093-6413(96)00038-9
[33] Rajagopal, K.R., Růžička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59-78 (2001) · Zbl 0971.76100 · doi:10.1007/s001610100034
[34] Růžička, M.: Electrorheological fluids: modeling and mathematical theory. In: Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000) · Zbl 0962.76001
[35] Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565-609 (2004) · Zbl 1099.35103
[36] Růžička, M.: Analysis of generalized Newtonian fluids. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Math., vol. 2073, pp. 199-238. Springer, Heidelberg (2013) · Zbl 1301.35112
[37] Sandri, D.: Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Modél. Math. Anal. Numér. 27(2), 131-155 (1993) · Zbl 0764.76039
[38] Seregin, G.A., Shilkin, T.N.: Regularity of minimizers of some variational problems in plasticity theory. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243 (1997). [no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 28, 270-298, 342-343; translation in J. Math. Sci. New York 99(1), 969-988 (2000)] · Zbl 0904.49025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.