×

Geometric properties of an integral operator. (English) Zbl 1360.30016

Summary: Let \(\mathcal {P}_{\gamma}(\alpha,\beta)\), denote the class of all normalized analytic functions \(f\) defined in the unit disc \(E=\{z : |z|<1 \}\) such that \[ \mathrm{Re} \, \left\{ e^{i\eta}\left[ (1-\gamma)\left( \frac{f(z)}{z}\right)^{\alpha}+\gamma \left( \frac{zf'(z)}{f(z)}\right) \left( \frac{f(z)}{z}\right)^{\alpha}-\beta \right] \right\} >0, \] for all \(z\in E\) and \(\eta \in \mathbb {R}\), where \(\beta <1\), \(\alpha \geq 0\) and \(0\leq \gamma \leq 1\). For a real-valued non-negative function \(\lambda \) with the normalization \(\int_{0}^{1}\lambda (t)dt=1\), we consider the integral operators \[ V_{\lambda, \mu}(f)(z)=\left( \int_{0}^{1}\lambda (t)\left( \frac{f(tz)}{t}\right)^{\mu}dt\right) ^{\frac{1}{\mu}}, \quad \mu >0 \] and a class \(\mathcal {S}_{\delta}(\nu)\) of normalized analytic functions \(f\) which satisfy the condition \[ \mathrm{Re} \, \left[ \left( 1+\frac{zf''(z)}{f'(z)}\right) +\left( \nu -1\right) \left( \frac{zf'(z)}{f(z)}\right) \right] >\delta, \] for \(\delta <\nu \leq 1+\delta \) and \(0\leq \delta <1\). The aim of this paper is to find the sharp value of \(\beta \) so that the operator \(V_{\lambda, \alpha}(f)\) carries \(\mathcal {P}_{\gamma}(\alpha,\beta)\) into \(\mathcal {S}_{\delta}(\alpha)\). Some interesting applications for different choices of \(\lambda \) are discussed.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C55 General theory of univalent and multivalent functions of one complex variable
Full Text: DOI

References:

[1] Aghalary, R., Ebadian, A., Shams, S.: Geometric properties of some linear operators defined by convolution. Tamkang J. Math. 39(4), 325-334 (2008) · Zbl 1167.30303
[2] Ali, R.M., Badghaish, A.O., Ravichandran, V., Swaminathan, A.: Starlikeness of integral transforms and duality. J. Math. Anal. Appl. 385, 808-822 (2012) · Zbl 1244.30008 · doi:10.1016/j.jmaa.2011.07.014
[3] Ali, R.M., Singh, V.: Convexity and starlikeness of functions defined by a class of integral operators. Complex Var. Theory Appl. 26(4), 299-309 (1995) · Zbl 0851.30005 · doi:10.1080/17476939508814791
[4] Balasubramanian, R., Ponnusamy, S., Prabhakaran, D.J.: Duality techniques for certain integral transforms to be starlike. J. Math. Anal. Appl. 293, 355-373 (2004) · Zbl 1061.30012 · doi:10.1016/j.jmaa.2004.01.011
[5] Balasubramanian, R., Ponnusamy, S., Prabhakaran, D.J.: Convexity of integral transforms and function spaces. Integral Transforms Spec. Funct. 18(1-2), 1-14 (2007) · Zbl 1109.30009 · doi:10.1080/10652460600871426
[6] Balasubramanian, R., Ponnusamy, S., Prabhakaran, D.J.: On extremal problems related to integral transforms of a class of analytic functions. J. Math. Anal. Appl. 336, 542-555 (2007) · Zbl 1125.30005 · doi:10.1016/j.jmaa.2007.02.076
[7] Barnard, R.W., Naik, S., Ponnusamy, S.: Univalency of a weighted integral transform of certain functions. J. Comput. Appl. Math. 193, 638-651 (2006) · Zbl 1098.30016 · doi:10.1016/j.cam.2005.06.025
[8] Bazilevič, I.E.: On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. 37(79), 471-476 (1955) · Zbl 0065.31002
[9] Choi, J.H., Kim, Y.C., Saigo, M.: Geometric properties of convolution operators defined by Gaussian hypergeometric functions. Integral Transforms Spec. Funct. 13(2), 117-130 (2002) · Zbl 1019.30011 · doi:10.1080/10652460212900
[10] Devi, S., Swaminathan, A.: Integral transforms of functions to be in a class of analytic functions using duality techniques. J. Complex Anal. (2014). Art. ID 473069 · Zbl 1310.30012
[11] Ebadian, A., Aghalary, R., Shams, S.: Application of duality techniques to starlikeness of weighted integral transforms. Bull. Belg. Math. Soc. Simon Stevin 17, 275-285 (2010) · Zbl 1194.30009
[12] Fournier, R., Ruscheweyh, S.: On two extremal problems related to univalent functions. Rocky Mountain J. Math 24(2), 529-538 (1994) · Zbl 0818.30013 · doi:10.1216/rmjm/1181072416
[13] Kim, Y.C., Rønning, F.: Integral transforms of certain subclasses of analytic functions. J. Math. Anal. Appl. 258(2), 466-489 (2001) · Zbl 0982.44001 · doi:10.1006/jmaa.2000.7383
[14] Liu, M.: Properties for some subclasses of analytic functions. Bull. Inst. Math. Acad. Sin. 30, 9-26 (2002) · Zbl 1023.30022
[15] Mocanu, P.T.: Une propriété de convexité generalisée dans la théorie da la représentation conforme. Mathematica (Cluj) 11(34), 127-133 (1969) · Zbl 0195.36401
[16] Ponnusamy, S., Rønning, F.: Duality for hadamard products applied to certain integral transforms. Complex Var Theory Appl. 32, 263-287 (1997) · Zbl 0878.30007 · doi:10.1080/17476939708814995
[17] Ponnusamy, S., Rønning, F.: Integral transforms of functions with the derivative in a half plane. Israel J. Math. 144, 177-188 (1999) · Zbl 0943.30010 · doi:10.1007/BF02785576
[18] Ponnusamy, S., Rønning, F.: Integral transforms of a class of analytic functions. Complex Var. Elliptic Equ. 53(5), 423-434 (2008) · Zbl 1146.30009 · doi:10.1080/17476930701685767
[19] Ruscheweyh, S.: Convolutions in Geometric Function Theory. Les Presses de l’Universite de Montreal, Montreal (1982) · Zbl 0499.30001
[20] Ruscheweyh, S.: Duality for Hadamard products with applications to extremal problems for functions regular in unit disc. Trans. Am. Math. Soc. 210, 63-74 (1975) · Zbl 0311.30011 · doi:10.1090/S0002-9947-1975-0382626-7
[21] Singh, R.: On Bazilevič functions. Proc. Am. Mat. Soc. 38, 261-271 (1973) · Zbl 0262.30014
[22] Thomas, D.K.: On Bazilevič functions. Trans. Am. Math. Soc. 132, 353-361 (1968) · Zbl 0165.09002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.