×

RBF-based meshless local Petrov Galerkin method for the multi-dimensional convection-diffusion-reaction equation. (English) Zbl 1404.65176

Summary: In this paper, the meshless local Petrov Galerkin (MLPG) method is employed to analyze convection-diffusion-reaction equation based on radial basis function (RBF) collocation method. Compared with traditional Petrov Galerkin method, MLPG method is not limited to the particular interpolation domain and integration domain. In the MLPG method, interpolation domain is chosen through a special method which ensures that the number of neighboring nodes around the interpolation point (or collocation point) is constant. And all integrations are carried out locally over small quadrature domains of regular shapes such as two-dimensional (2D) squares and three-dimensional (3D) cubes. Crank-Nicolson scheme is applied to the time discretization to guarantee the unconditional stability of present method. Thanks to the Kronecker delta function property of the shape functions for RBF interpolation, we can easily obtain the error estimates that MLPG method has second order convergent rate in time and space simultaneously. Finally, numerical examples are presented to show the accuracy and efficiency of the MLPG method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K57 Reaction-diffusion equations
58J35 Heat and other parabolic equation methods for PDEs on manifolds
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bayona, V.; Moscoso, M.; Carretero, M.; Kindelan, M., RBF-FD formulas and convergence properties, J. Comput. Phys., 229, 22, 8281-8295, (2010) · Zbl 1201.65038
[2] Bayona, V.; Moscoso, M.; Kindelan, M., Optimal constant shape parameter for multiquadric based RBF-FD method, J. Comput. Phys., 230, 19, 7384-7399, (2011) · Zbl 1343.65128
[3] Chen, Z., Finite Elements Methods Applications, (2005), Springer: Springer Berlin Heidelberg · Zbl 1082.65118
[4] Deparis, S.; Forti, D.; Quarteroni, A., A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids, SIAM J. Sci. Comput., 36, 6, A2745-A2762, (2014) · Zbl 1312.41006
[5] Fornberg, B.; Piret, C., On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere, J. Comput. Phys., 227, 5, 2758-2780, (2008) · Zbl 1135.65039
[6] Hu, D.; Long, S.; Liu, K.; Li, G., A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation, Eng. Anal. Bound. Elem., 30, 399-404, (2006) · Zbl 1187.74258
[7] Li, J.; Zhai, S.; Weng, Z.; Feng, X., H-adaptive RBF-FD method for the high-dimensional convection-diffusion equation, Int. Commun. Heat Mass Transf., 89, 139-146, (2017)
[8] Li, N.; Tan, Z.; Feng, X., Novel two-level discretization method for high dimensional semilinear elliptic problems base on RBF-FD scheme, Numer. Heat Transf., Part B: Fundam., 72, 5, 349-360, (2017)
[9] Li, N.; Su, H.; Gui, D.; Feng, X., Multiquadric RBF-FD method for the convection-dominated diffusion problems base on shishkin nodes, Int. J. Heat Mass Transf., 118, 734-745, (2018)
[10] Li, N.; Zhao, J.; Feng, X.; Gui, D., Generalized polynomial chaos for the convection diffusion equation with uncertainty, Int. J. Heat Mass Transf., 97, 289-300, (2016)
[11] Liu, K.; Long, S.; Li, G., A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem, Eng. Anal. Bound. Elem., 30, 72-76, (2006) · Zbl 1195.74287
[12] Micchelli C, A., Interpolation of scattered data: distance matrices and conditionally positive definite functions//Approximation theory and spline functions, (1984), Springer: Springer Netherlands · Zbl 0558.41012
[13] Monysekar, K.; Sanyasiraju, Y., An upwind scheme to solve unsteady convection-diffusion equations using radial basis function based local hermitian interpolation method with PDE centres, Proc. Eng., 127, 418-423, (2015)
[14] Madych, W. R., Miscellaneous error bounds for multiquadric and related interpolators, Comput. Math. Appl., 24, 12, 121-138, (1992) · Zbl 0766.41003
[15] Qian, L.; Cai, H.; Guo, R.; Feng, X., The characteristic variational multiscale method for convection-dominated convection-diffusion-reaction problems, Int. J. Heat Mass Transf., 72, 72, 461-469, (2014)
[16] Qian, L.; Feng, X.; He, Y., The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems, Appl. Math. Model., 36, 2, 561-572, (2012) · Zbl 1236.76041
[17] Qiao, Y.; Wu, J.; Feng, X., The theory, method and application of MQ radial basis function, J. Xinjiang Univ., 32, 4, 1-9, (2015) · Zbl 1363.65150
[18] Qiao, Y.; Zhai, S.; Feng, X., RBF-FD method for the high dimensional time fractional convection-diffusion equation, Int. Commun. Heat Mass Transf., 89, 230-240, (2017)
[19] Rashidinia, J.; Khasi, M.; Fasshauer G, E., A stable gaussian radial basis function method for solving nonlinear unsteady convection-diffusion-reaction equations, Comput. Math. Appl., 75, 5, 1831-1850, (2018) · Zbl 1409.65077
[20] Shirzadi, A.; Sladek, V.; Sladek, J., A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation, Eng. Anal. Bound. Elem., 37, 1, 8-14, (2013) · Zbl 1352.65372
[21] Shirzadi, A.; Ling, L.; Abbasbandy, S., Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations, Eng. Anal. Bound. Elem., 36, 11, 1522-1527, (2012) · Zbl 1352.65263
[22] Si, Z.; Feng, X.; Abduwali, A., The semi-discrete streamline diffusion finite element method for time-dependent convection-diffusion problems, Appl. Math. Comput., 202, 2, 771-779, (2008) · Zbl 1153.65098
[23] Stevens, D.; Power, H.; Lees, M.; Morvan, H., The use of PDE centres in the local RBF hermitian method for 3d convective-diffusion problems, J. Comput. Phys., 228, 12, 4606-4624, (2009) · Zbl 1167.65447
[24] Stevens, D.; Power, H.; Meng, C. Y.; Howard, D.; Cliffe, K. A., An alternative local collocation strategy for high-convergence meshless PDE solutions, using radial basis functions, J. Comput. Phys., 254, 4, 52-75, (2013) · Zbl 1349.65657
[25] Wendland, H., Scattered Data Approximation, (2005), Cambridge University Press · Zbl 1075.65021
[26] Wu, W.; Feng, X.; Liu, D., The local discontinuous Galerkin finite element method for a class of convection-diffusion equations, Nonlinear Anal.: Real World Appl., 14, 1, 734-752, (2013) · Zbl 1259.65153
[27] Yun, D. F.; Hon, Y. C., Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems, Eng. Anal. Bound. Elem., 67, 63-80, (2016) · Zbl 1403.65106
[28] Zhai, S.; Feng, X.; He, Y., A new high-order compact ADI method for 3-d unsteady convection-diffusion problems with discontinuous coefficients, Numer. Heat Transf. Part B: Fundam., 65, 4, 376-391, (2014)
[29] Zhai, S.; Feng, X.; He, Y., An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation, J. Comput. Phys., 269, 138-155, (2014) · Zbl 1349.65356
[30] Zhai, S.; Feng, X.; Liu, D., A novel method to deduce a high-order compact difference scheme for the three-dimensional semi linear convection-diffusion equation with variable coefficients, Numer. Heat Transf. Part B: Fundam., 63, 5, 425-455, (2013)
[31] Zhai, S.; Gui, D.; Huang, P.; Feng, X., A novel high-order ADI method for 3D fractional convection-diffusion equations, Int. Commun. Heat Mass Transf., 66, 212-217, (2015)
[32] Zhai, S.; Feng, X.; Weng, Z., New high-order compact adi algorithms for 3D nonlinear time-fractional convection-diffusion equation, Math. Probl. Eng., 2013, (2013) · Zbl 1296.65118
[33] Zhai, S.; Qian, L.; Gui, D.; Feng, X., A block-centered characteristic finite difference method for convection-dominated diffusion equation, Int. Commun. Heat Mass Transf., 61, 1-7, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.