×

Differential calculi on \(\mathbb Z_3\)-graded Grassmann plane. (English) Zbl 1420.17016

Summary: Covariant differential calculi on the \(\mathbb Z_3\)-graded Grassmann plane are presented. Using the generators and their partial derivatives a Grassmann-Heisenberg algebra is constructed. An R-matrix which satisfies graded Yang-Baxter equation is obtained.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T25 Yang-Baxter equations
81R60 Noncommutative geometry in quantum theory
Full Text: DOI

References:

[1] Abramov, \[V.: {\mathbb{Z}}_3\] Z3-graded analogues of Clifford algebras and algebra of \[{\mathbb{Z}}_3\] Z3-graded symmetries. Algebras Groups Geom. 12, 201-221 (1995) · Zbl 0860.15027
[2] Abramov, V.: Ternary generalizations of Grassmann algebra. Proc. Estonian Acad. Sci. Phys. Math. 45, 174-182 (1996) · Zbl 0864.17001
[3] Caenepeel, S., Van Oystaeyen, F.: A note on generalized Clifford algebras and representations. Commun. Algebra 17, 93-102 (1989) · Zbl 0666.20005 · doi:10.1080/00927878908823715
[4] Celik, S.: Differential geometry of the \[{\mathbb{Z}}_3\] Z3-graded quantum superplane. J. Phys. A Math. Gen. 35, 4257-4268 (2001) · Zbl 1044.81065
[5] Celik, S.: A differential calculus on \[{\mathbb{Z}}_3\] Z3-graded quantum superspace \[{\mathbb{R}}_q(2|1)\] Rq(2|1). Algebras Represent Theory 19, 713-730 (2016) · Zbl 1357.58006 · doi:10.1007/s10468-016-9596-5
[6] Celik, S.: A new \[{\mathbb{Z}}_3\] Z3-graded quantum qroup. J. Lie Theory 27, 545-554 (2017) · Zbl 1412.17008
[7] Chung, W.S.: Quantum \[{\mathbb{Z}}_3\] Z3-graded space. J. Math. Phys. 35, 2497-2504 (1994) · Zbl 0821.58006 · doi:10.1063/1.530519
[8] Connes, A.: Non-commutative differential geometry. Publ. IHES 62, 257-360 (1985) · Zbl 0592.46056 · doi:10.1007/BF02698807
[9] Coquereaux, R.: Differentials of higher order in noncommutative differential geometry. Lett. Math. Phys. 42, 241-259 (1997) · Zbl 0886.58005 · doi:10.1023/A:1007438020850
[10] Dubois-Violett, M.: Generalized differential spaces with \[d^N=0\] dN=0 and the \[q\] q-differential calculus. Czech. J. Phys. 46, 1227-1233 (1996) · Zbl 0953.18004 · doi:10.1007/BF01690337
[11] Giaquinto, A., Zhang, J.: Quantum Weyl algebras. J. Algebra 176, 861-881 (1995) · Zbl 0846.17007 · doi:10.1006/jabr.1995.1276
[12] Kapranov, M.M.: On the q-analog of homological algebra. Cornell University (1996). arXiv:q-alg/9611005 (Preprint) · Zbl 0821.58006
[13] Kerner, R., Abramov, V.: On certain realizations of q-deformed exterior differential calculus. Rep. Math. Phys. 43, 179-194 (1999) · Zbl 0934.58007 · doi:10.1016/S0034-4877(99)80026-3
[14] Kerner, R., Niemeyer, B.: Covariant \[q\] q-differential calculus and its deformtions at \[q^N=1\] qN=1. Lett. Math. Phys. 45, 161-176 (1998) · Zbl 0934.58004 · doi:10.1023/A:1007464303255
[15] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations, Texts and Monographs in Physics. Springer, New York (1997) · Zbl 0891.17010 · doi:10.1007/978-3-642-60896-4
[16] Majid, S.: Foundations of quantum group theory. Cambridge Univ. Press, Cambridge (1995) · Zbl 0857.17009 · doi:10.1017/CBO9780511613104
[17] Manin, Yu. I.: Quantum groups and noncommutative geometry, Les Publ. CRM, Univ. de Montreal (1991)
[18] Manin, Yu. I.: Multiparametric quantum deformation of the general linear supergroup. Commun. Math. Phys. 123, 163-175 (1989) · Zbl 0673.16004
[19] Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211-264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[20] Rausch de Traubenberg, M.: Clifford algebras of polynomials generalized grassmann algebras and q-deformed Heisenberg algebras. Adv. Appl. Clifford Algebra 4, 131-144 (1994) · Zbl 0841.15023
[21] Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125-170 (1989) · Zbl 0751.58042 · doi:10.1007/BF01221411
[22] Wess, J., Zumino, B.: Covariant differential calculus on the quantum hyperplane. Nucl. Phys. B 18, 302-312 (1990) · Zbl 0957.46514 · doi:10.1016/0920-5632(91)90143-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.