×

A literature review on correlation clustering: cross-disciplinary taxonomy with bibliometric analysis. (English) Zbl 1501.90086

Summary: The correlation clustering problem identifies clusters in a set of objects when the qualitative information about objects’ mutual similarities or dissimilarities is given in a signed network. This clustering problem has been studied in different scientific areas, including computer sciences, operations research, and social sciences. A plethora of applications, problem extensions, and solution approaches have resulted from these studies. This paper focuses on the cross-disciplinary evolution of this problem by analysing the taxonomic and bibliometric developments during the 1992 to 2020 period. With the aim of enhancing cross-fertilization of knowledge, we present a unified discussion of the problem, including details of several mathematical formulations and solution approaches. Additionally, we analyse the literature gaps and propose some dominant research directions for possible future studies.

MSC:

90C27 Combinatorial optimization
Full Text: DOI

References:

[1] Nelson, K., Some evidence for the cognitive primacy of categorization and its functional basis, Merrill-Palmer Quarterly of Behavior and Development, 19, 1, 21-39 (1973)
[2] Rosch E (1977) Classification of real-world objects: Origins and representations in cognition. Thinking: Readings in Cognitive Science, p 212-222
[3] Bonchi, F.; García-Soriano, D.; Gullo, F., Correlation clustering, Synthesis Lectures on Data Mining and Knowledge Discovery, 12, 1, 1-149 (2022) · Zbl 1491.68008 · doi:10.1007/978-3-031-79210-6
[4] Wirth A (2010) Correlation Clustering. Springer US, Boston, MA, p 227-231
[5] Cohen WW, Richman J (2002) Learning to match and cluster large high-dimensional data sets for data integration. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p 475-480
[6] Néda, Z.; Florian, R.; Ravasz, M.; Libál, A.; Györgyi, G., Phase transition in an optimal clusterization model, Phys A, 362, 2, 357-368 (2006) · doi:10.1016/j.physa.2005.08.008
[7] Néda Z, Sumi R, Ercsey-Ravasz M, Varga M, Molnár B, Cseh G (2009) Correlation clustering on networks. J Phys A: Math Theor 42(34):345003 · Zbl 1279.90031
[8] Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation. ACM Trans Knowl Discov Data (TKDD) 1(1):4-es
[9] Cesa-Bianchi N, Gentile C, Vitale F, Zappella G (2012) A correlation clustering approach to link classification in signed networks. In: Conference on Learning Theory. JMLR Workshop and Conference Proceedings, p 34-1
[10] Il’ev V, Il’eva S, Kononov A (2016) Short survey on graph correlation clustering with minimization criteria. In: International Conference on Discrete Optimization and Operations Research. Springer, p 25-36 · Zbl 1380.68314
[11] Pandove D, Goel S, Rani R (2018) Correlation clustering methodologies and their fundamental results. Expert Syst 35(1):e12229
[12] Doreian, P.; Mrvar, A., Partitioning signed social networks, Soc Networks, 31, 1, 1-11 (2009) · doi:10.1016/j.socnet.2008.08.001
[13] Figueiredo, R.; Moura, G., Mixed integer programming formulations for clustering problems related to structural balance, Social Networks, 35, 4, 639-651 (2013) · doi:10.1016/j.socnet.2013.09.002
[14] Levorato M, Drummond L, Frota Y, Figueiredo R (2015) An ILS algorithm to evaluate structural balance in signed social networks. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing. p 1117-1122
[15] Bair, E., Semi-supervised clustering methods, Wiley Interdiscip Rev Comput Stat, 5, 5, 349-361 (2013) · Zbl 07915799 · doi:10.1002/wics.1270
[16] Chunaev P (2020) Community detection in node-attributed social networks: a survey. Computer Science Review 37:100286 · Zbl 1478.91146
[17] Fortunato, S., Community detection in graphs, Phys Rep, 486, 3-5, 75-174 (2010) · doi:10.1016/j.physrep.2009.11.002
[18] Grira N, Crucianu M, Boujemaa N (2004) Unsupervised and semi-supervised clustering: a brief survey. A review of machine learning techniques for processing multimedia content. 1:9-16
[19] Harenberg, S.; Bello, G.; Gjeltema, L.; Ranshous, S.; Harlalka, J.; Seay, R.; Padmanabhan, K.; Samatova, N., Community detection in large-scale networks: a survey and empirical evaluation, Wiley Interdisciplinary Reviews: Computational Statistics, 6, 6, 426-439 (2014) · Zbl 07912746 · doi:10.1002/wics.1319
[20] Jain, AK; Murty, MN; Flynn, PJ, Data clustering: a review, ACM Comput Surv (CSUR), 31, 3, 264-323 (1999) · doi:10.1145/331499.331504
[21] Kim, W., Parallel clustering algorithms: survey, Parallel Algorithms, Spring, 34, 43 (2009)
[22] Nguyen, HL; Woon, YK; Ng, WK, A survey on data stream clustering and classification, Knowl Inf Syst, 45, 3, 535-569 (2015) · doi:10.1007/s10115-014-0808-1
[23] Rokach L (2009) A survey of clustering algorithms. In: Data Mining and Knowledge Discovery Handbook. Springer, p 269-298
[24] Schaeffer, SE, Graph clustering, Computer Science Review, 1, 1, 27-64 (2007) · Zbl 1302.68237 · doi:10.1016/j.cosrev.2007.05.001
[25] Xu, D.; Tian, Y., A comprehensive survey of clustering algorithms, Annals of Data Science, 2, 2, 165-193 (2015) · doi:10.1007/s40745-015-0040-1
[26] Xu, R.; Wunsch, D., Survey of clustering algorithms, IEEE Trans Neural Networks, 16, 3, 645-678 (2005) · doi:10.1109/TNN.2005.845141
[27] Heider, F., Attitudes and cognitive organization, J Psychol, 21, 1, 107-112 (1946) · doi:10.1080/00223980.1946.9917275
[28] Cartwright, D.; Harary, F., Structural balance: a generalization of heider’s theory, Psychol Rev, 63, 5, 277 (1956) · doi:10.1037/h0046049
[29] Davis, JA, Clustering and structural balance in graphs, Hum Relat, 20, 2, 181-187 (1967) · doi:10.1177/001872676702000206
[30] Doreian, P.; Mrvar, A., A partitioning approach to structural balance, Soc Networks, 18, 2, 149-168 (1996) · doi:10.1016/0378-8733(95)00259-6
[31] Ben-Dor, A.; Shamir, R.; Yakhini, Z., Clustering gene expression patterns, J Comput Biol, 6, 3-4, 281-297 (1999) · doi:10.1089/106652799318274
[32] Chen ZZ, Jiang T, Lin GH (2001) Computing phylogenetic roots with bounded degrees and errors. In: Workshop on Algorithms and Data Structures. Springer, p 377-388 · Zbl 0997.68529
[33] Shamir, R.; Sharan, R.; Tsur, D., Cluster graph modification problems, Discret Appl Math, 144, 1-2, 173-182 (2004) · Zbl 1068.68107 · doi:10.1016/j.dam.2004.01.007
[34] Zahn, CT Jr, Approximating symmetric relations by equivalence relations, J Soc Ind Appl Math, 12, 4, 840-847 (1964) · Zbl 0129.16003 · doi:10.1137/0112071
[35] Régnier, S., On some mathematical aspects of automatics classification problems, ICC Bulletin, 4, 3, 175 (1965)
[36] Ambrosi K (1984) Aggregation binärer relationen in der qualitativen datenanalyse
[37] Barthelemy, JP; Monjardet, B., The median procedure in cluster analysis and social choice theory, Math Soc Sci, 1, 3, 235-267 (1981) · Zbl 0486.62057 · doi:10.1016/0165-4896(81)90041-X
[38] Marcotorchino, J.; Michaud, P., Heuristic approach of the similarity aggregation problem, Methods of Operations Research, 43, 395-404 (1981) · Zbl 0505.90002
[39] Marcotorchino J, Michaud P (1981) Optimization in exploratory data analysis. In: Proceedings of 5th International Symposium on Operations Research. Physica Verlag Köln · Zbl 0457.90010
[40] Mirkin, B., The problems of approximation in space of relations and qualitative data analysis, Information and Remote Control, 35, 1424-1431, 2 (1974)
[41] Opitz O, Schader M (1984) Analyse qualitativer daten: einführung und übersicht. Operations-Research-Spektrum 6(2):67-83 · Zbl 0536.90047
[42] Doyle JR (1992) MCC-multiple correlation clustering. Int J Man Mach Stud 37(6):751-765
[43] Bansal, N.; Blum, A.; Chawla, S., Correlation clustering, Mach Learn, 56, 1, 89-113 (2004) · Zbl 1089.68085 · doi:10.1023/B:MACH.0000033116.57574.95
[44] Garey MR, Johnson DS (1979) Computers and intractability, vol 174. Freeman San Francisco · Zbl 0411.68039
[45] Avidor, A.; Langberg, M., The multi-multiway cut problem, Theoret Comput Sci, 377, 1-3, 35-42 (2007) · Zbl 1115.68171 · doi:10.1016/j.tcs.2007.02.026
[46] Charikar, M.; Guruswami, V.; Wirth, A., Clustering with qualitative information, J Comput Syst Sci, 71, 3, 360-383 (2005) · Zbl 1094.68075 · doi:10.1016/j.jcss.2004.10.012
[47] Demaine, ED; Emanuel, D.; Fiat, A.; Immorlica, N., Correlation clustering in general weighted graphs, Theoret Comput Sci, 361, 2-3, 172-187 (2006) · Zbl 1099.68074 · doi:10.1016/j.tcs.2006.05.008
[48] Ailon, N.; Charikar, M.; Newman, A., Aggregating inconsistent information: ranking and clustering, J ACM (JACM), 55, 5, 1-27 (2008) · Zbl 1325.68102
[49] Demaine ED, Immorlica N (2003) Correlation clustering with partial information. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer, Berlin, Heidelberg, p 1-13 · Zbl 1202.68479
[50] Wirth AI (2005) Approximation algorithms for clustering. Princeton University
[51] Wahid DF (2017) Random models and heuristic algorithms for correlation clustering problems on signed social networks. Ph.D. thesis, University of British Columbia
[52] Chawla S, Makarychev K, Schramm T, Yaroslavtsev G (2015) Near optimal LP rounding algorithm for correlationclustering on complete and complete k-partite graphs. In: Proceedings of the forty-seventh annual ACM symposium on Theory of computing. p 219-228 · Zbl 1321.68495
[53] Charikar M, Wirth A (2004) Maximizing quadratic programs: Extending Grothendieck’s inequality. In: 45th Annual IEEE Symposium on Foundations of Computer Science. IEEE, p 54-60
[54] Swamy C (2004) Correlation clustering: maximizing agreements via semidefinite programming. In: SODA, vol 4. Citeseer, pp 526-527 · Zbl 1318.68197
[55] Abdelnasser, A.; Hossain, E.; Kim, DI, Clustering and resource allocation for dense femtocells in a two-tier cellular OFDMA network, IEEE Trans Wireless Commun, 13, 3, 1628-1641 (2014) · doi:10.1109/TW.2014.011614.131163
[56] Ahn K, Cormode G, Guha S, McGregor A, Wirth A (2015) Correlation clustering in data streams. In: International Conference on Machine Learning. PMLR, p 2237-2246 · Zbl 1515.68281
[57] Giotis I, Guruswami V (2006) Correlation clustering with a fixed number of clusters. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm. p 1167-1176 · Zbl 1194.62087
[58] Mathieu C, Schudy W (2010) Correlation clustering with noisy input. In: Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, p 712-728 · Zbl 1288.68197
[59] Zaw CW, Tun YK, Hong CS (2017) User clustering based on correlation in 5G using semidefinite programming. In: 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, p 342-345
[60] Samal, M.; Saradhi, VV; Nandi, S., Scalability of correlation clustering, Pattern Anal Appl, 21, 3, 703-719 (2018) · doi:10.1007/s10044-017-0598-7
[61] Bonizzoni, P.; Della Vedova, G.; Dondi, R.; Jiang, T., On the approximation of correlation clustering and consensus clustering, J Comput Syst Sci, 74, 5, 671-696 (2008) · Zbl 1169.68586 · doi:10.1016/j.jcss.2007.06.024
[62] Lorrain, F.; White, HC, Structural equivalence of individuals in social networks, J Math Sociol, 1, 1, 49-80 (1971) · doi:10.1080/0022250X.1971.9989788
[63] Batagelj, V., Notes on blockmodeling, Soc Networks, 19, 2, 143-155 (1997) · doi:10.1016/S0378-8733(96)00297-3
[64] Doreian, P.; Krackhardt, D., Pre-transitive balance mechanisms for signed networks, J Math Sociol, 25, 1, 43-67 (2001) · Zbl 1017.91520 · doi:10.1080/0022250X.2001.9990244
[65] De Nooy W, Mrvar A, Batagelj V (2018) Exploratory social network analysis with Pajek: revised and expanded edition for updated software, vol 46. Cambridge University Press
[66] Doreian, P., A multiple indicator approach to blockmodeling signed networks, Soc Networks, 30, 3, 247-258 (2008) · doi:10.1016/j.socnet.2008.03.005
[67] Drummond L, Figueiredo R, Frota Y, Levorato M (2013) Efficient solution of the correlation clustering problem: an application to structural balance. In: OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”. Springer, p 674-683
[68] Figueiredo, R.; Frota, Y., The maximum balanced subgraph of a signed graph: applications and solution approaches, Eur J Oper Res, 236, 2, 473-487 (2014) · Zbl 1317.90305 · doi:10.1016/j.ejor.2013.12.036
[69] Williamson DP, Shmoys DB (2011) The design of approximation algorithms. Cambridge University Press · Zbl 1219.90004
[70] Coleman T, Saunderson J, Wirth A (2008) A local-search 2-approximation for 2-correlation-clustering. In: European Symposium on Algorithms. Springer, p 308-319 · Zbl 1158.68549
[71] Ailon, N.; Avigdor-Elgrabli, N.; Liberty, E.; Van Zuylen, A., Improved approximation algorithms for bipartite correlation clustering, SIAM J Comput, 41, 5, 1110-1121 (2012) · Zbl 1257.68076 · doi:10.1137/110848712
[72] Fukunaga, T., Lp-based pivoting algorithm for higher-order correlation clustering, J Comb Optim, 37, 4, 1312-1326 (2019) · Zbl 1425.90092 · doi:10.1007/s10878-018-0354-y
[73] Cambus M, Choo D, Miikonen H, Uitto J (2021) Massively parallel correlation clustering in bounded arboricity graphs. arXiv preprint arXiv:2102.11660
[74] Chierichetti F, Dalvi N, Kumar R (2014) Correlation clustering in mapreduce. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p 641-650
[75] Pan X, Papailiopoulos D, Oymak S, Recht B, Ramchandran K, Jordan MI (2015) Parallel correlation clustering on big graphs. Adv Neural Inf Proces Syst 28
[76] Javed, MA; Younis, MS; Latif, S.; Qadir, J.; Baig, A., Community detection in networks: a multidisciplinary review, J Netw Comput Appl, 108, 87-111 (2018) · doi:10.1016/j.jnca.2018.02.011
[77] Achtert E, Böhm C, Kriegel HP, Kröger P, Zimek A (2007) Robust, complete, and efficient correlation clustering. In: Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM, p 413-418
[78] Zhang Z, Cheng H, Chen W, Zhang S, Fang Q (2008) Correlation clustering based on genetic algorithm for documents clustering. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, p 3193-3198
[79] Wang N, Li J (2013) Restoring: a greedy heuristic approach based on neighborhood for correlation clustering. In: International Conference on Advanced Data Mining and Applications. Springer, p 348-359
[80] Lingas, A.; Persson, M.; Sledneu, D., Iterative merging heuristics for correlation clustering, International Journal of Metaheuristics, 3, 2, 105-117 (2014) · doi:10.1504/IJMHEUR.2014.063141
[81] Levorato, M.; Figueiredo, R.; Frota, Y.; Drummond, L., Evaluating balancing on social networks through the efficient solution of correlation clustering problems, EURO Journal on Computational Optimization, 5, 4, 467-498 (2017) · Zbl 1386.90161 · doi:10.1007/s13675-017-0082-6
[82] Veldt, N.; Gleich, DF; Wirth, A.; Saunderson, J., Metric-constrained optimization for graph clustering algorithms, SIAM Journal on Mathematics of Data Science, 1, 2, 333-355 (2019) · Zbl 1499.05598 · doi:10.1137/18M1217152
[83] Aszalcós L, Bakó M (2017) Correlation clustering: a parallel approach? In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, p 403-406
[84] Keuper M, Lukasik J, Singh M, Yarkony J (2019) Massively parallel benders decomposition for correlation clustering. arXiv preprint arXiv:1902.05659
[85] Ji S, Xu D, Du D, Gai L (2020) Approximation algorithm for the balanced 2-correlation clustering problem on well-proportional graphs. In: International Conference on Algorithmic Applications in Management. Springer, p 97-107 · Zbl 1482.68176
[86] Ailon N, Bhattacharya A, Jaiswal R (2018) Approximate correlation clustering using same-cluster queries. In: Latin American Symposium on Theoretical Informatics. Springer, Cham, p 14-27 · Zbl 1436.68291
[87] Klein PN, Mathieu C, Zhou H (2015) Correlation clustering and two-edge-connected augmentation for planar graphs. In: 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik · Zbl 1355.68207
[88] Rebagliati N, RotaBulò S, Pelillo M (2013) Correlation clustering with stochastic labellings. In: International Workshop on Similarity-Based Pattern Recognition. Springer, Berlin, Heidelberg, p 120-133
[89] Makarychev K, Makarychev Y, Vijayaraghavan A (2015) Correlation clustering with noisy partial information. In: Conference on Learning Theory. PMLR, p 1321-1342 · Zbl 1362.68293
[90] Puleo, GJ; Milenkovic, O., Correlation clustering with constrained cluster sizes and extended weights bounds, SIAM J Optim, 25, 3, 1857-1872 (2015) · Zbl 1337.68296 · doi:10.1137/140994198
[91] Veldt N, Wirth AI, Gleich DF (2017) Correlation clustering with low-rank matrices. In: Proceedings of the 26th International Conference on World Wide Web. p 1025-1034
[92] Gleich DF, Veldt N, Wirth A (2018) Correlation clustering generalized. arXiv preprint arXiv:1809.0949 · Zbl 1533.68406
[93] Li P, Dau H, Puleo G, Milenkovic O (2017) Motif clustering and overlapping clustering for social network analysis. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, p 1-9
[94] Hua J, Yu J, Yang MS (2021) Star-based learning correlation clustering. Pattern Recogn 116:107966
[95] Geerts, F.; Ndindi, R., Bounded correlation clustering, International Journal of Data Science and Analytics, 1, 1, 17-35 (2016) · doi:10.1007/s41060-016-0005-2
[96] Bonchi, F.; Gionis, A.; Ukkonen, A., Overlapping correlation clustering, Knowl Inf Syst, 35, 1, 1-32 (2013) · doi:10.1007/s10115-012-0522-9
[97] Andrade CE, Resende MG, Karloff HJ, Miyazawa FK (2014) Evolutionary algorithms for overlapping correlation clustering. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. p 405-412
[98] Chagas GO, Lorena LAN, dos Santos RDC (2019) A hybrid heuristic for the overlapping cluster editing problem. Appl Soft Comput 81:105482
[99] Bonchi, F.; Gionis, A.; Gullo, F.; Tsourakakis, CE; Ukkonen, A., Chromatic correlation clustering, ACM Trans Knowl Discov Data (TKDD), 9, 4, 1-24 (2015) · doi:10.1145/2728170
[100] Hmimida, M.; Kanawati, R., Community detection in multiplex networks: a seed-centric approach, Networks & Heterogeneous Media, 10, 1, 71 (2015) · Zbl 1336.93026 · doi:10.3934/nhm.2015.10.71
[101] Huang Y, Wang H (2016) Consensus and multiplex approach for community detection in attributed networks. In: 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, p 425-429
[102] Lancichinetti, A.; Fortunato, S., Consensus clustering in complex networks, Sci Rep, 2, 1, 1-7 (2012) · doi:10.1038/srep00336
[103] Mondragon RJ, Iacovacci J, Bianconi G (2018) Multilink communities of multiplex networks. PLoS ONE 13(3):e0193821
[104] Murtagh, F., A survey of recent advances in hierarchical clustering algorithms, Comput J, 26, 4, 354-359 (1983) · Zbl 0523.68030 · doi:10.1093/comjnl/26.4.354
[105] Roy, A.; Pokutta, S., Hierarchical clustering via spreading metrics, J Mach Learn Res, 18, 1-35 (2017) · Zbl 1441.62173
[106] Bhattacharya A, De RK (2008) Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics 24(11):1359-1366
[107] Sumi, R.; Neda, Z., Molecular dynamics approach to correlation clustering, Int J Mod Phys C, 19, 9, 1349-1358 (2008) · Zbl 1155.82311 · doi:10.1142/S0129183108012984
[108] Wei, F.; Sakata, K.; Asakura, T.; Kikuchi, J., Systemic homeostasis in metabolome, ionome, and microbiome of wild Yellowfin Goby in Estuarine ecosystem, Sci Rep, 8, 1, 1-12 (2018)
[109] Akorli, J.; Namaali, PA; Ametsi, GW; Egyirifa, RK; Pels, NAP, Generational conservation of composition and diversity of field-acquired midgut microbiota in anopheles gambiae (sensu lato) during colonization in the laboratory, Parasit Vectors, 12, 1, 1-9 (2019) · doi:10.1186/s13071-019-3287-0
[110] Bakó M (2018) The efficiency of classification in imperfect databases: comparing KNN and correlation clustering. In: Annales Mathematicae et Informaticae, vol 49. Eszterházy Károly Egyetem Líceum Kiadó, pp 11-20 · Zbl 1424.68049
[111] Barik, S.; Das, S.; Vikalo, H., Qsdpr: Viral quasispecies reconstruction via correlation clustering, Genomics, 110, 6, 375-381 (2018) · doi:10.1016/j.ygeno.2017.12.007
[112] Belyaeva, A.; Venkatachalapathy, S.; Nagarajan, M.; Shivashankar, G.; Uhler, C., Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription, Proc Natl Acad Sci, 114, 52, 13714-13719 (2017) · doi:10.1073/pnas.1708028115
[113] Bessonov K, Walkey CJ, Shelp BJ, van Vuuren HJ, Chiu D, van der Merwe G (2013) Functional analyses of NSF1 in wine yeast using interconnected correlation clustering and molecular analyses. PLoS ONE 8(10):e77192
[114] Bhattacharya, A.; De, RK, Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values, J Biomed Inform, 43, 4, 560-568 (2010) · doi:10.1016/j.jbi.2010.02.001
[115] Joglekar SR (2014) Two-stage stock portfolio construction: correlation clustering and genetic optimization. In: The Twenty-Seventh International Flairs Conference
[116] Krasowski, N.; Beier, T.; Knott, G.; Köthe, U.; Hamprecht, FA; Kreshuk, A., Neuron segmentation with high-level biological priors, IEEE Trans Med Imaging, 37, 4, 829-839 (2017) · doi:10.1109/TMI.2017.2712360
[117] Vassy Z, Kosa I, Vassanyi I (2017) Correlation clustering of stable angina clinical care patterns for 506 thousand patients. Journal of Healthcare Engineering 2017
[118] Zhang C, Yarkony J, Hamprecht FA (2014) Cell detection and segmentation using correlation clustering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, p 9-16
[119] Alush, A.; Goldberger, J., Ensemble segmentation using efficient integer linear programming, IEEE Trans Pattern Anal Mach Intell, 34, 10, 1966-1977 (2012) · doi:10.1109/TPAMI.2011.280
[120] Firman M, Thomas D, Julier S, Sugimoto A (2013) Learning to discover objects in RGB-D images using correlation clustering. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, p 1107-1112
[121] Kappes, JH; Speth, M.; Reinelt, G.; Schnörr, C., Higher-order segmentation via multicuts, Comput Vis Image Underst, 143, 104-119 (2016) · doi:10.1016/j.cviu.2015.11.005
[122] Kim, S.; Nowozin, S.; Kohli, P.; Yoo, CD, Task-specific image partitioning, IEEE Trans Image Process, 22, 2, 488-500 (2012) · Zbl 1373.94206 · doi:10.1109/TIP.2012.2218822
[123] López-Sastre, RJ; Tuytelaars, T.; Acevedo-Rodríguez, FJ; Maldonado-Bascón, S., Towards a more discriminative and semantic visual vocabulary, Comput Vis Image Underst, 115, 3, 415-425 (2011) · doi:10.1016/j.cviu.2010.10.009
[124] Marra F, Poggi G, Sansone C, Verdoliva L (2016) Correlation clustering for PRNU-based blind image source identification. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS). IEEE, p 1-6
[125] Marra, F.; Poggi, G.; Sansone, C.; Verdoliva, L., Blind prnu-based image clustering for source identification, IEEE Trans Inf Forensics Secur, 12, 9, 2197-2211 (2017) · doi:10.1109/TIFS.2017.2701335
[126] Mehta, A.; Ashapure, A.; Dikshit, O., Segmentation-based classification of hyperspectral imagery using projected and correlation clustering techniques, Geocarto Int, 31, 10, 1045-1057 (2016) · doi:10.1080/10106049.2015.1110207
[127] Solera F, Calderara S (2013) Social groups detection in crowd through shape-augmented structured learning. In: International Conference on Image Analysis and Processing. Springer, p 542-551
[128] Yarkony J, Ihler A, Fowlkes CC (2012) Fast planar correlation clustering for image segmentation. In: European Conference on Computer Vision. Springer, p 568-581
[129] Zhu, Z.; Cao, G., Toward privacy preserving and collusion resistance in a location proof updating system, IEEE Trans Mob Comput, 12, 1, 51-64 (2011) · doi:10.1109/TMC.2011.237
[130] Aszalós L, Mihálydeák T (2015) Correlation clustering by contraction. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, p 425-434
[131] Slaoui, SC; Dafir, Z.; Lamari, Y., E-transitive: an enhanced version of the transitive heuristic for clustering categorical data, Procedia Computer Science, 127, 26-34 (2018) · doi:10.1016/j.procs.2018.01.094
[132] Dong Xie X, Zou J, Huang X (2015) Optimization for massive data query method in database. In: 2015 International Conference on Automation, Mechanical Control and Computational Engineering. Atlantis Press
[133] Zhao, Q.; Xiong, C.; Yu, C.; Zhang, C.; Zhao, X., A new energy-aware task scheduling method for data-intensive applications in the cloud, J Netw Comput Appl, 59, 14-27 (2016) · doi:10.1016/j.jnca.2015.05.001
[134] Zhao, Q.; Xiong, C.; Zhang, K.; Yue, Y.; Yang, J., A data placement algorithm for data intensive applications in cloud, International Journal of Grid and Distributed Computing, 9, 2, 145-156 (2016) · doi:10.14257/ijgdc.2016.9.2.13
[135] Albin T, Drews P, Heßeler F, Ivanescu AM, Seidl T, Abel D (2011) A hybrid control approach for low temperature combustion engine control. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, p 6846-6851
[136] Papenhausen E, Wang B, Ha S, Zelenyuk A, Imre D, Mueller K (2013) GPU-accelerated incremental correlation clustering of large data with visual feedback. In: 2013 IEEE International Conference on Big Data. IEEE, p 63-70
[137] Wang H, Tan SXD, Swarup S, Liu XX (2013) A power-driven thermal sensor placement algorithm for dynamic thermal management. In: 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, p 1215-1220
[138] Maatouk, A.; Hajri, SE; Assaad, M.; Sari, H., On optimal scheduling for joint spatial division and multiplexing approach in fdd massive mimo, IEEE Trans Signal Process, 67, 4, 1006-1021 (2018) · Zbl 1414.90160 · doi:10.1109/TSP.2018.2886163
[139] Nga, NTT; Khanh, NK; Hong, SN, Entropy-based correlation clustering for wireless sensor networks in multi-correlated regional environments, IEIE Transactions on Smart Processing and Computing, 5, 2, 85-93 (2016) · doi:10.5573/IEIESPC.2016.5.2.085
[140] Galagedera, DU, A new perspective of equity market performance, J Int Finan Markets Inst Money, 26, 333-357 (2013) · doi:10.1016/j.intfin.2013.07.003
[141] Isogai, T., Clustering of Japanese stock returns by recursive modularity optimization for efficient portfolio diversification, J Complex Networks, 2, 4, 557-584 (2014) · doi:10.1093/comnet/cnu023
[142] Zhan HCJ, Rea W, Rea A (2015) An application of correlation clustering to portfolio diversification. arXiv preprint arXiv:1511.07945
[143] Mimno D, McCallum A, Mann GS (2006) Bibliometric impact measures leveraging topic analysis. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital libraries (JCDL’06). IEEE, p 65-74
[144] Morris, S.; DeYong, C.; Wu, Z.; Salman, S.; Yemenu, D., Diva: a visualization system for exploring document databases for technology forecasting, Comput Ind Eng, 43, 4, 841-862 (2002) · doi:10.1016/S0360-8352(02)00143-2
[145] Mogee, ME, Using patent data for technology analysis and planning, Res Technol Manag, 34, 4, 43-49 (1991) · doi:10.1080/08956308.1991.11670755
[146] Daim, TU; Rueda, G.; Martin, H.; Gerdsri, P., Forecasting emerging technologies: Use of bibliometrics and patent analysis, Technol Forecast Soc Chang, 73, 8, 981-1012 (2006) · doi:10.1016/j.techfore.2006.04.004
[147] Wahid DF, Ezzeldin M, Hassini E, El-Dakhakhni WW (2022) Common-knowledge networks for university strategic research planning. Decision Analytics Journal 2:100027
[148] Hu, X.; Leydesdorff, L.; Rousseau, R., Exponential growth in the number of items in the wos, ISSI Newsletter, 16, 2, 32-38 (2020)
[149] Zimek, A., Correlation clustering. ACM SIGKDD Explorations Newsletter, 11, 1, 53-54 (2009) · doi:10.1145/1656274.1656286
[150] Aria, M.; Cuccurullo, C., bibliometrix: An r-tool for comprehensive science mapping analysis, J Informet, 11, 4, 959-975 (2017) · doi:10.1016/j.joi.2017.08.007
[151] Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the International AAAI Conference on Web and Social Media, vol 3. pp 361-362
[152] Hsu JW, Huang DW (2011) Correlation between impact and collaboration. Scientometrics 86(2)317-324
[153] Abramo, G.; D’Angelo, CA; Di Costa, F., The collaboration behavior of top scientists, Scientometrics, 118, 1, 215-232 (2019) · doi:10.1007/s11192-018-2970-9
[154] Brin, S.; Page, L., The anatomy of a large-scale hypertextual web search engine, Computer Networks and ISDN Systems, 30, 1-7, 107-117 (1998) · doi:10.1016/S0169-7552(98)00110-X
[155] Blondel, VD; Guillaume, JL; Lambiotte, R.; Lefebvre, E., Fast unfolding of communities in large networks, J Stat Mech: Theory Exp, 2008, 10, P10008 (2008) · Zbl 1459.91130 · doi:10.1088/1742-5468/2008/10/P10008
[156] Garfield, E., Historiographic mapping of knowledge domains literature, J Inf Sci, 30, 2, 119-145 (2004) · doi:10.1177/0165551504042802
[157] Klavans, R.; Boyack, KW, Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge?, J Am Soc Inf Sci, 68, 4, 984-998 (2017)
[158] Esmailian P, Abtahi SE, Jalili M (2014) Mesoscopic analysis of online social networks: the role of negative ties. Phys Rev E 90(4):042817
[159] Garfield E (1990) Keywords Plus-ISI’s breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Current Contents 32:5-9
[160] Garfield, E.; Sher, IH, Key words plus [tm]-algorithmic derivative indexing, Journal-American Society For Information Science, 44, 298-298 (1993) · doi:10.1002/(SICI)1097-4571(199306)44:5<298::AID-ASI5>3.0.CO;2-A
[161] Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z., Comparing keywords plus of WOS and author keywords: a case study of patient adherence research, J Am Soc Inf Sci, 67, 4, 967-972 (2016)
[162] González-Álvarez, J.; Cervera-Crespo, T., Research production in high-impact journals of contemporary neuroscience: a gender analysis, J Informet, 11, 1, 232-243 (2017) · doi:10.1016/j.joi.2016.12.007
[163] Khasseh, AA; Soheili, F.; Moghaddam, HS; Chelak, AM, Intellectual structure of knowledge in Imetrics: a co-word analysis, Inf Process Manag, 53, 3, 705-720 (2017) · doi:10.1016/j.ipm.2017.02.001
[164] Rigolon, A.; Browning, MH; Lee, K.; Shin, S., Access to urban green space in cities of the global south: a systematic literature review, Urban Sci, 2, 3, 67 (2018) · doi:10.3390/urbansci2030067
[165] Zhao, W.; Mao, J.; Lu, K., Ranking themes on co-word networks: exploring the relationships among different metrics, Inf Process Manag, 54, 2, 203-218 (2018) · doi:10.1016/j.ipm.2017.11.005
[166] Pan X, Papailiopoulos D, Recht B, Ramchandran K, Jordan MI (2014) Scaling up correlation clustering through parallelism and concurrency control. In: DISCML Workshop at International Conference on Neural Information Processing Systems
[167] Ben-David S, Long PM, Mansour Y (2001) Agnostic boosting. In: International Conference on Computational Learning Theory. Springer, p 507-516 · Zbl 0992.68089
[168] Kearns, MJ; Schapire, RE; Sellie, LM, Toward efficient agnostic learning, Mach Learn, 17, 2, 115-141 (1994) · Zbl 0938.68797
[169] Pozzi S, Zoppis I, Mauri G (2005) Combinatorial and machine learning approaches in clustering microarray data. In: Biological and Artificial Intelligence Environments. Springer, p 63-71
[170] Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2001) Support vector clustering. J Mach Learn Res 2(Dec):125-137 · Zbl 1002.68598
[171] Suthaharan S (2016) Support vector machine. In: Machine learning models and algorithms for big data classification. Springer, p 207-235 · Zbl 1409.68004
[172] Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: In Proceedings of 19th International Conference on Machine Learning (ICML-2002). Citeseer
[173] Böcker S, Baumbach J (2013) Cluster editing. In: Conference on Computability in Europe. Springer, p 33-44 · Zbl 1387.68177
[174] Cohn, D.; Caruana, R.; McCallum, A., Semi-supervised clustering with user feedback, Constrained Clustering: Advances in Algorithms, Theory, and Applications, 4, 1, 17-32 (2003) · Zbl 1161.68759
[175] Donath WE, Hoffman AJ (2003) Lower bounds for the partitioning of graphs. In: Selected Papers of Alan J Hoffman: With Commentary. World Scientific, p 437-442
[176] Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol 96. pp 226-231
[177] Flake GW, Lawrence S, Giles CL (2000) Efficient identification of web communities. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p 150-160
[178] Fortunato S, Latora V, Marchiori M (2004) Method to find community structures based on information centrality. Phys Rev E 70(5):056104
[179] Girvan, M.; Newman, ME, Community structure in social and biological networks, Proc Natl Acad Sci, 99, 12, 7821-7826 (2002) · Zbl 1032.91716 · doi:10.1073/pnas.122653799
[180] Hinneburg A, Keim DA et al (1998) An efficient approach to clustering in large multimedia databases with noise. In: KDD, vol 98. pp 58-65
[181] von Luxburg U (2006) A tutorial on spectral clustering (tech. rep. 149). Max Planck Institute for Biological Cybernetics
[182] MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol 1. Oakland, CA, USA, pp 281-297 · Zbl 0214.46201
[183] Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: International symposium on computer and information sciences. Springer, p 284-293 · Zbl 1161.68694
[184] Vragović I, Louis E (2006) Network community structure and loop coefficient method. Phys Rev E 74(1):016105
[185] Xu X, Yuruk N, Feng Z, Schweiger TA (2007) Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p 824-833
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.