×

Quantifying age and model uncertainties in palaeoclimate data and dynamical climate models with a joint inferential analysis. (English) Zbl 1472.86001

Summary: The study of palaeoclimates relies on information sampled in natural archives such as deep sea cores. Scientific investigations often use such information in multi-stage analyses, typically with an age model being fitted to a core to convert depths into ages at stage one. These age estimates are then used as inputs to develop, calibrate or select climate models in a second stage of analysis. Here, we show that such multi-stage approaches can lead to misleading conclusions, and develop a joint inferential approach for climate reconstruction, model calibration and age estimation. As an illustration, we investigate the glacial-interglacial cycle, fitting both an age model and dynamical climate model to two benthic sediment cores spanning the past 780 kyr. To show the danger of a multi-stage analysis, we sample ages from the posterior distribution, then perform model selection conditional on the sampled age estimates, mimicking standard practice. Doing so repeatedly for different samples leads to model selection conclusions that are substantially different from each other, and from the joint inferential analysis. We conclude that multi-stage analyses are insufficient when dealing with uncertainty, and that to draw sound conclusions the full joint inferential analysis should be performed.

MSC:

86A04 General questions in geophysics

References:

[1] Muller RA, MacDonald GJ. 1997 Glacial cycles and astronomical forcing. Science 277, 215-218. (doi:10.1126/science.277.5323.215) · doi:10.1126/science.277.5323.215
[2] Blaauw M. 2012 Out of tune: the dangers of aligning proxy archives. Quat. Sci. Rev. 36, 38-49. (doi:10.1016/j.quascirev.2010.11.012) · doi:10.1016/j.quascirev.2010.11.012
[3] Shackleton NJ et al. 1984 Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620-623. (doi:10.1038/307620a0) · doi:10.1038/307620a0
[4] Emiliani C. 1955 Pleistocene temperatures. J. Geol. 63, 538-578. (doi:10.1086/626295) · doi:10.1086/626295
[5] Shackleton NJ. 1967 Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15-17. (doi:10.1038/215015a0) · doi:10.1038/215015a0
[6] Tingley MP, Craigmile PF, Haran M, Li B, Mannshardt E, Rajaratnam B. 2012 Piecing together the past: statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev. 35, 1-22. (doi:10.1016/j.quascirev.2012.01.012) · doi:10.1016/j.quascirev.2012.01.012
[7] Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ. The orbital theory of Pleistocene climate: support from a revised chronology, of the marine δ18O record. In Milankovitch and climate, Part 1 (eds AL Berger, J Imbrie, JD Hays, G Kukla, B Saltzmann), pp. 269-305. Dordrecht, The Netherlands: Reidel.
[8] Lisiecki LE, Raymo ME. 2005 A Pliocene-Pleistocene stack of 57 globally distributed δ18O records. Paleoceanography 20, PA1003. (doi:10.1029/2004PA001071) · doi:10.1029/2004PA001071
[9] Huybers P. 2007 Glacial variability over the last two million years: an extended depth-derived age-model, continuous obliquity pacing and the Pleistocene progression. Quat. Sci. Rev. 26, 37-55. (doi:10.1016/j.quascirev.2006.07.013) · doi:10.1016/j.quascirev.2006.07.013
[10] Milankovitch M. 1941 Kanon der erdbestrahlung und seine anwendung auf das eiszeitenproblem. Belgrade, Serbia: Königlich Serbische Akademie.
[11] Milankovitch M. 1998 Canon of insolation and the ice-age problem. Beograd, Serbia: Narodna Biblioteka Srbije.
[12] Huybers P, Wunsch C. 2004 A depth-derived Pleistocene age model: uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography 19, PA1028. (doi:10.1029/2002PA000857) · doi:10.1029/2002PA000857
[13] Crucifix M. 2012 Oscillators and relaxation phenomena in Pleistocene climate theory. Phil. Trans. R. Soc. A 370, 1140-1165. (doi:10.1098/rsta.2011.0315) · doi:10.1098/rsta.2011.0315
[14] Crucifix M. 2013 Why could ice ages be unpredictable? Clim. Past 9, 2253-2267. (doi:10.5194/cp-9-2253-2013) · doi:10.5194/cp-9-2253-2013
[15] Feng F, Bailer-Jones CAL. 2015 Obliquity and precession as pacemakers of Pleistocene deglaciations. Quat. Sci. Rev. 122, 166-179. (doi:10.1016/j.quascirev.2015.05.006) · doi:10.1016/j.quascirev.2015.05.006
[16] Carson J, Crucifix M, Preston S, Wilkinson RD. 2018 Bayesian model selection for glacial-interglacial cycle. J. R. Stat. Soc. Ser. C Appl. Stat. 67, 25-54. (doi:10.1111/rssc.12222) · doi:10.1111/rssc.12222
[17] Shackleton NJ, Berger A, Peltier WR. 1990 An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Trans. R. Soc. Edinburgh: Earth Sci. 81, 251-261. (doi:10.1017/S0263593300020782) · doi:10.1017/S0263593300020782
[18] Mix AC, Le J, Shackleton NJ. 1995 Benthic foraminiferal stable isotope stratigraphy of site 846: 0-1.8 ma. Proc. Ocean Drill. Program Sci. Results 138, 839-854. (doi:10.2973/odp.proc.sr.138.160.1995) · doi:10.2973/odp.proc.sr.138.160.1995
[19] Sweeney J, Salter-Townshend M, Edwards T, Buck CE, Parnell AC. 2018 Statistical challenges in estimating past climate changes. WIREs Comp. Stat. 10, e1437. (doi:10.1002/wics.1437) · Zbl 07910827 · doi:10.1002/wics.1437
[20] Berger AL. 1978 Long term variations of daily insolation and Quaternary climate changes. J. Atmos. Sci. 35, 2362-2367. (doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2) · doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
[21] Imbrie J, Imbrie JZ. 1980 Modeling the climatic response to orbital variations. Science 207, 943-953. (doi:10.1126/science.207.4434.943) · doi:10.1126/science.207.4434.943
[22] Raymo ME. 1997 The timing of major climate terminations. Paleoceanography 12, 577-585. (doi:10.1029/97PA01169) · doi:10.1029/97PA01169
[23] Parnell AC, Buck CE, Doan TK. 2011 A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quat. Sci. Rev. 30, 2948-2960. (doi:10.1016/j.quascirev.2011.07.024) · doi:10.1016/j.quascirev.2011.07.024
[24] Blaauw M, Christen JA. 2011 Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457-474. (doi:10.1214/11-BA618) · Zbl 1330.62413 · doi:10.1214/11-BA618
[25] Spencer-Cervato C. 1998 Changing depth distribution of hiatuses during the Cenozoic. Paleoceanography 13, 178-182. (doi:10.1029/97PA03440) · doi:10.1029/97PA03440
[26] Bahr DB, Hutton EWH, Syvitski JPM, Pratson LF. 2001 Exponential approximations to compacted sediment porosity profiles. Comput. Geosci. 27, 691-700. (doi:10.1016/S0098-3004(00)00140-0) · doi:10.1016/S0098-3004(00)00140-0
[27] Singer BS, Pringle MS. 1996 Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from40Ar/39Ar incremental heating analysis of lavas. Earth Planet. Sci. Lett. 139, 47-61. (doi:10.1016/0012-821X(96)00003-9) · doi:10.1016/0012-821X(96)00003-9
[28] Berger A, Loutre MF. 2004 Astronomical theory of climate change. J. Phys. IV 121, 1-35. (doi:10.1051/jp4:2004121001) · doi:10.1051/jp4:2004121001
[29] Chopin N, Jacob PE, Papaspiliopoulos O. 2013 SMC2: an efficient algorithm for sequential analysis of state-space models. J. R. Stat. Soc. Ser. B Stat. Methodol. 75, 397-426. (doi:10.1111/j.1467-9868.2012.01046.x) · Zbl 1411.62242 · doi:10.1111/j.1467-9868.2012.01046.x
[30] Del Moral P, Doucet A, Jasra A. 2006 Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 68, 411-436. (doi:10.1111/j.1467-9868.2006.00553.x) · Zbl 1105.62034 · doi:10.1111/j.1467-9868.2006.00553.x
[31] Gordon NJ, Salmond DJ, Smith AFM. 1993 Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process. 140, 107-113. (doi:10.1049/ip-f-2.1993.0015) · doi:10.1049/ip-f-2.1993.0015
[32] Del Moral P. 2004 Feynman-Kac formulae. New York, NY: Springer. · Zbl 1130.60003
[33] Andrieu C, Roberts GO. 2009 The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37, 697-725. (doi:10.1214/07-AOS574) · Zbl 1185.60083 · doi:10.1214/07-AOS574
[34] Andrieu C, Doucet A, Holenstein R. 2010 Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 72, 269-342. (doi:10.1111/j.1467-9868.2009.00736.x) · Zbl 1411.65020 · doi:10.1111/j.1467-9868.2009.00736.x
[35] Jeffreys H. 1939 The theory of probability. Oxford, UK: Oxford University Press. · JFM 65.0546.04
[36] Kass RE, Raftery AE. 1995 Bayes factors. J. Am. Stat. Assoc. 90, 773-795. (doi:10.1080/01621459.1995.10476572) · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572
[37] Liu JS, Chen R. 1998 Sequential Monte Carlo methods for dynamical systems. J. Am. Stat. Assoc. 93, 1032-1044. (doi:10.1080/01621459.1998.10473765) · Zbl 1064.65500 · doi:10.1080/01621459.1998.10473765
[38] Douc R, Cappé O, Moulines E. 2005 Comparison of resampling schemes for particle filtering. In Proc. of the 4th Int. Symp. on Image and Signal Processing and Analysis (ISPA 2005), Zagreb, Croatia, 15-17 September, pp. 64-69. Piscataway, NJ: IEEE. (doi:10.1109/ISPA.2005.195385) · doi:10.1109/ISPA.2005.195385
[39] Carson J. 2018 JointPaleoAnalysis: Initial release. Zenodo. (doi:10.5281/zenodo.1973118) · doi:10.5281/zenodo.1973118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.