×

Treatment of non-Markovian effects to investigate non-locality, dense coding and non-local information. (English) Zbl 07823483

Summary: In this contribution, we explore the time-evolution of Bell non-locality, dense coding capacity, local and non-local information with an exact solution in a two-qubit system, for the case in which the second qubit is coupled to a Markovian reservoir. Our results reveal a significant relationship between dense coding capacity and the behavior of Bell non-locality. In particular, we observe that optimal dense coding occurs when the violation of Bell non-locality is at its maximum. Furthermore, we study the dynamics of both local and non-local information, considering different initial states, including maximally/partially entangled states. However, our outcomes indicate that all quantities are sensitive to temperature variations, where a temperature threshold is obtained. Beyond this threshold, all proposed quantities exhibit unstable behavior. Specifically, Bell non-locality and dense coding capacity stabilize eventually to steady values below their classical limits. Moreover, the non-Markovian behavior is more prominent when using partially entangled states compared to those used maximally.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
Full Text: DOI

References:

[1] Gogolin, C.; Eisert, J., Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. (2016)
[2] Žunkovič, Bojan, Closed hierarchy of correlations in Markovian open quantum systems. New J. Phys. (2014) · Zbl 1451.81305
[3] Diósi, L.; Strunz, W-T., The non-Markovian stochastic Schrödinger equation for open systems. Phys. Lett. A, 6 (1997) · Zbl 0969.81559
[4] Breuer, H.-P.; Petruccione, F., The Theory of Open Quantum Systems (2002), Oxford University Press: Oxford University Press New York · Zbl 1053.81001
[5] Rivas, A.; Huelga, S. F., Open Quantum Systems (2012), Springer: Springer New York · Zbl 1246.81006
[6] Banerjee, S., Decoherence and dissipation of an open quantum system with a squeezed and frequency-modulated heat bath. Physica A, 1 (2004)
[7] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement. Rev. Mod. Phys., 865 (2009) · Zbl 1205.81012
[8] El Allati, A.; Hassouni, Y.; Metwally, N., Communication via an entangled coherent quantum network. Phys. Scr., 6 (2011) · Zbl 1222.81132
[9] El Allati, A.; Hassouni, Y.; Metwally, N., Quantum communication via Heisenberg XYZ system. Int. J. Quantum Inf., 03 (2013) · Zbl 1272.81029
[10] Seida, C.; El Allati, A.; Metwally, N.; Hassouni, Y., Multi-party bidirectional teleportation. Optik (2021)
[11] El Allati, A.; Medeni, M. B.O.; Hassouni, Y., Quantum steganography via GHZ(4) state. Commun. Theor. Phys., 4, 577-582 (2012) · Zbl 1247.81093
[12] El Allati, A.; El Baz, M., Quantum key distribution using optical coherent states via amplitude damping. Opt. Quantum Electron., 1035-1046 (2015)
[13] Bukbech, S.; El Anouz, K.; El Allali, Z.; Metwally, N.; El Allati, A., Multiparameter estimation for a two-qubit system coupled to independent reservoirs using quantum Fisher information. Quantum Stud. Math. Found., 24 (2023) · Zbl 07899085
[14] Dahbi, Z.; Oumennana, M.; El Anouz, K.; Mansour, M.; El Allati, A., Quantum Fisher information versus quantum skew information in double quantum dots with Rashba interaction. Appl. Phys. B, 2 (2023)
[15] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev., 777 (1935) · Zbl 0012.04201
[16] Barnett, S. M., Quantum Information (2009), Oxford University Press: Oxford University Press Oxford · Zbl 1170.81300
[17] Mattle, K.; Weinfurter, H.; Kwiat, P. G.; Zeilinger, A., Dense coding in experimental quantum communication. Phys. Rev. Lett., 4656 (1996)
[18] Fang, X.; Zhu, X.; Feng, M.; Mao, X.; Du, F., Experimental implementation of dense coding using nuclear magnetic resonance. Phys. Rev. A (2000)
[19] Braunstein, S. L.; Kimble, H. J., Dense coding for continuous variables. Phys. Rev. A (2000)
[20] Bose, S.; Plenio, M. B.; Vedral, V., Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt., 291 (2000)
[21] Haddadi, S.; Hu, M. L.; Khedif, Y.; Dolatkhah, H.; Pourkarimi, M. R.; Daoud, M., Measurement uncertainty and dense coding in a two-qubit system: Combined effects of bosonic reservoir and dipole-dipole interaction. Results Phys. (2022)
[22] Abd-Rabbou, M. Y.; Khalil, E. M., Dense coding and quantum memory assisted entropic uncertainty relations in a two-qubit state influenced by dipole and symmetric cross interactions. Ann. Phys. (2022) · Zbl 07770737
[23] Schrödinger, E., Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc., 32 (1936) · JFM 62.1613.03
[24] Bell, J. S., On the Einstein Podolsky Rosen paradox. Physics, 195-200 (1964)
[25] Oppenheim, J.; Wehner, S., The uncertainty principle determines the nonlocality of quantum mechanics. Science, 1072 (2010) · Zbl 1226.81013
[26] Heisenberg, W., Z. Phys., 172-198 (1927) · JFM 53.0853.05
[27] Robertson, H. P., The uncertainty principle. Phys. Rev., 163 (1929)
[28] Deutsch, D., Uncertainty in quantum measurements. Phys. Rev. Lett., 631 (1983)
[29] Lo, H-P.; Li, C-M.; Yabushita, A.; Chen, Y-N.; Luo, C-W.; Kobayashi, T., Experimental violation of Bell inequalities for multi-dimensional systems. Sci. Rep. (2016)
[30] Berrada, K.; Eleuch, H., Einstein-Podolsky-Rosen steering and nonlocality in quantum dot systems. Physica E (2021)
[31] Mohamed, A. B.; Rahman, A.; Aldosari, F. M., Thermal quantum memory, Bell-non-locality, and entanglement behaviors in a two-spin Heisenberg chain model. Alex. Eng. J., 861-871 (2023)
[32] Metwally, N., Enhancing entanglement, local and non-local information of accelerated two-qubit and two-qutrit systems via weak-reverse measurements. Europhys. Lett. (2017)
[33] Abdelwahab, A. G.; Ghwail, S. A.; Metwally, N., The concealment of accelerated information is possible. Quantum Inf. Process., 71 (2021) · Zbl 1509.81143
[34] Campbell, S.; Paternostro, M.; Bose, S.; Kim, M. S., Probing the environment of an inaccessible system by aqubit ancilla. Phys. Rev. (2010)
[35] Mohamed, A. B.A.; Khalil, E. M., Atomic non-locality dynamics of two moving atoms in a hybrid nonlinear system: concurrence, uncertainty-induced non-locality and Bell inequality. Opt. Quantum Electron., 612 (2021)
[36] Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S., Rev. Mod. Phys., 419 (2014)
[37] Horodecki, R.; Horodecki, P.; Horodecki, M., Phys. Lett. A, 340 (1995)
[38] Hiroshima, Tohya, Optimal dense coding with mixed state entanglement. J. Phys. A, Math. Gen., 35, 6907 (2001) · Zbl 0988.81026
[39] Camati, Patrice A.; Santos, Jonas F. G.; Serra, Roberto M., Employing non-Markovian effects to improve the performance of a quantum Otto refrigerator. Phys. Rev. A (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.