×

Tuning the separability in noncommutative space. (English) Zbl 1541.81087

Summary: With the help of the generalized Peres-Horodecki separability criterion (Simon’s condition) for a bipartite Gaussian state, we have studied the separability of the noncommutative (NC) space coordinate degrees of freedom. Non-symplectic nature of the transformation between the usual commutative space and NC space restricts the straightforward use of Simon’s condition in NCS. We have transformed the NCS system to an equivalent Hamiltonian in commutative space through the Bopp shift, which enables the utilization of the separability criterion. To make our study fairly general and to analyze the effect of parameters on the separability of bipartite state in NC-space, we have considered a bilinear Hamiltonian with time-dependent (TD) parameters, along with a TD external interaction, which is linear in field modes. The system is transformed (\(\mathrm{Sp}(4, \mathbb{R})\)) into canonical form keeping the intrinsic symplectic structure intact. The solution of the TD-Schrödinger equation is obtained with the help of the Lewis-Riesenfeld invariant method (LRIM). Expectation values of the observables (thus the covariance matrix) are constructed from the states obtained from LRIM. It turns out that the existence of the NC parameters in the oscillator determines the separability of the states. In particular, for isotropic oscillators, the separability condition for the bipartite Gaussian states depends on specific values of NC parameters. Moreover, particular anisotropic parameter values for the oscillator may cease the separability. In other words, both the deformation parameters \((\theta, \eta)\) and parameter values of the oscillator (mass, frequency) are important characteristics for the separability of bipartite Gaussian states. Thus tuning the parameter values, one can destroy or recreate the separability of states. With the help of a toy model, we have demonstrated how the tuning of a TD-NC space parameter affects the separability.
©2024 American Institute of Physics

MSC:

81R60 Noncommutative geometry in quantum theory
81P15 Quantum measurement theory, state operations, state preparations
81P16 Quantum state spaces, operational and probabilistic concepts

References:

[1] Benatti, F.; Floreanini, R.; Franchini, F.; Marzolino, U., Phys. Rep., 878, 1-27, 2020 · Zbl 1472.81326 · doi:10.1016/j.physrep.2020.07.003
[2] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Rev. Mod. Phys., 81, 865, 2009 · Zbl 1205.81012 · doi:10.1103/revmodphys.81.865
[3] Schrödinger, E., Naturwissenschaften, 23, 807, 1935 · doi:10.1007/bf01491891
[4] Ferraro, A.; Olivares, S.; Paris, M. G. A., Napoli Series on Physics and Astrophysics, 2005, Bibliopolis
[5] Korbicz, J. K.; Wehr, J.; Lewenstein, M., Commun. Math. Phys., 281, 753-774, 2008 · Zbl 1157.81007 · doi:10.1007/s00220-008-0493-6
[6] Bäuml, S.; Winter, A.; Yang, D., J. Math. Phys., 60, 072201, 2019 · Zbl 1416.81024 · doi:10.1063/1.5091856
[7] Peres, A., Phys. Rev. Lett., 77, 1413, 1996 · Zbl 0947.81003 · doi:10.1103/physrevlett.77.1413
[8] Horodecki, P., Phys. Lett. A, 232, 333, 1997 · Zbl 1053.81504 · doi:10.1016/s0375-9601(97)00416-7
[9] Gnonfin, H.; Gouba, L., Symmetry, 15, 11, 2089, 2023 · doi:10.3390/sym15112089
[10] de la Torre, A. C.; Goyeneche, D., Am. J. Phys., 71, 49-54, 2003 · Zbl 1219.81003 · doi:10.1119/1.1514208
[11] Simon, R., Phys. Rev. Lett., 84, 2726, 2000 · doi:10.1103/physrevlett.84.2726
[12] Jayachandran, P.; Zaw, L. H.; Scarani, V., Phys. Rev. Lett., 130, 160201, 2023 · doi:10.1103/physrevlett.130.160201
[13] Bouwmeester, D.; Pan, J. W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Nature, 390, 575, 1997 · Zbl 1369.81006 · doi:10.1038/37539
[14] Aliloute, S.; El Allati, A.; El Aouadi, I., Quantum Inf. Process., 20, 29, 2021 · Zbl 1509.81642 · doi:10.1007/s11128-020-02945-6
[15] El Anouz, K.; Onyenegecha, C. P.; Opara, A. I.; Salah, A.; El Allati, A., J. Opt. Soc. Am. B, 39, 979, 2022 · doi:10.1364/josab.444823
[16] Simon, R.; Mukunda, N.; Dutta, B., Phys. Rev. A, 49, 1567, 1994 · doi:10.1103/physreva.49.1567
[17] Gutiérrez-Vega, J. C., Eur. J. Phys., 42, 035401, 2021 · Zbl 1523.81108 · doi:10.1088/1361-6404/abd98a
[18] Dias, N. C.; de Gosson, M. A.; Prata, J. N., J. Fourier Anal. Appl., 25, 210-241, 2019 · Zbl 1406.81051 · doi:10.1007/s00041-018-9602-x
[19] Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N., Phys. Rev. D, 86, 105030, 2012 · doi:10.1103/physrevd.86.105030
[20] Xiao, Y.; Jing, N., Sci. Rep., 6, 36616, 2016 · doi:10.1038/srep36616
[21] Cruz-Prado, H.; Marmo, G.; Schuch, D.; Castaños, O., J. Math. Phys., 62, 042105, 2021 · Zbl 1462.81108 · doi:10.1063/5.0033817
[22] Dou, Y.; Du, H., J. Math. Phys., 54, 103508, 2013 · Zbl 1284.81179 · doi:10.1063/1.4825114
[23] Ashtekar, A.; Geroch, R., Rep. Prog. Phys., 37, 1211, 1974 · doi:10.1088/0034-4885/37/10/001
[24] Stelle, K. S., The unification of quantum gravity, Nucl. Phys. B, Proc. Suppl., 88, 3-9, 2000 · Zbl 1273.81226 · doi:10.1016/s0920-5632(00)00747-7
[25] Pfeifer, C.; Relancio, J. J., Eur. Phys. J. C, 82, 150, 2022 · doi:10.1140/epjc/s10052-022-10066-w
[26] Liberati, S., Tests of Lorentz invariance: A 2013 update, Classical Quantum Gravity, 30, 133001, 2013 · Zbl 1273.83002 · doi:10.1088/0264-9381/30/13/133001
[27] Seiberg, N.; Witten, E., J. High Energy Phys., 9, 032, 1999 · doi:10.1088/1126-6708/1999/04/017
[28] Romero, J. M.; Vergara, J. D.; Santiago, J. A., Phys. Rev. D, 75, 065008, 2007 · doi:10.1103/physrevd.75.065008
[29] Connes, A.; Douglas, M. R.; Schwarz, A., JHEP, 2, 003, 1998 · doi:10.1088/1126-6708/1998/02/003
[30] Bertolami, O.; Rosa, J. G.; de Aragão, C. M. L.; Castorina, P.; Zappalà, D., Phys. Rev. D, 72, 025010, 2005 · doi:10.1103/physrevd.72.025010
[31] García-Compeán, H.; Obregón, O.; Ramírez, C., Phys. Rev. Lett., 88, 161301, 2002 · doi:10.1103/PhysRevLett.88.161301
[32] Ansoldi, S.; Nicolini, P.; Smailagic, A.; Spallucci, E., Phys. Lett. B, 645, 261-266, 2007 · Zbl 1256.83014 · doi:10.1016/j.physletb.2006.12.020
[33] Banerjee, R.; Ghosh, S., Phys. Lett. B, 533, 162-167, 2002 · Zbl 0994.81118 · doi:10.1016/s0370-2693(02)01566-6
[34] Ghosh, S.; Gangopadhyay, S.; Panigrahi, P. K., Noncommutative quantum cosmology with perfect fluid, Mod. Phys. Lett. A, 37, 2250009, 2022 · doi:10.1142/s0217732322500092
[35] Patra, P., Quantum Inf. Process., 22, 20, 2023 · Zbl 1508.81888 · doi:10.1007/s11128-022-03776-3
[36] Gouba, L., Int. J. Mod. Phys. A, 31, 1630025, 2016 · Zbl 1344.81005 · doi:10.1142/s0217751x16300258
[37] Lin, B.-S.; Xu, J.; Heng, T.-H., Induced entanglement entropy of harmonic oscillators in non-commutative phase space, Mod. Phys. Lett. A, 34, 1950269, 2019 · Zbl 1423.81110 · doi:10.1142/s0217732319502699
[38] Koumetio Armel, A.; Deuto Germain, Y.; Alain Giresse, T.; Martin, T., Phys. Scr., 96, 125731, 2021 · doi:10.1088/1402-4896/ac42a9
[39] Muhuri, A.; Sinha, D.; Ghosh, S., Eur. Phys. J. Plus, 136, 35, 2021 · doi:10.1140/epjp/s13360-020-00972-x
[40] Patra, P., J. Math. Phys., 64, 4, 2023 · Zbl 1512.81032 · doi:10.1063/5.0106709
[41] Bastos, C.; Bernardini, A. E.; Bertolami, O.; Dias, N. C.; Prata, J. N., Phys. Rev. D, 88, 085013, 2013 · doi:10.1103/physrevd.88.085013
[42] Azangue Koumetio, A.; Yiande Deuto, G.; Tene, A. G.; Tchoffo, M., Int. J. Theor. Phys., 61, 111, 2022 · Zbl 1490.81121 · doi:10.1007/s10773-022-05065-2
[43] de Gosson, M. A., Am. J. Phys., 81, 328-337, 2013 · doi:10.1119/1.4791775
[44] Hatzinikitas, A. N., The non-commutative Robertson-Schrödinger uncertainty principle, Quantum Stud.: Math. Found., 10, 67-78, 2023 · Zbl 07899064 · doi:10.1007/s40509-022-00282-0
[45] Bastos, C.; Dias, N. C.; Prata, J. N., Commun. Math. Phys., 299, 709-740, 2010 · Zbl 1202.81135 · doi:10.1007/s00220-010-1109-5
[46] Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N., J. Math. Phys., 49, 072101, 2008 · Zbl 1152.81330 · doi:10.1063/1.2944996
[47] Biswas, K.; Saha, J. P.; Patra, P., Indian J. Phys., 95, 647-655, 2021 · doi:10.1007/s12648-020-01727-1
[48] Mostafazadeh, A., J. Phys. A: Math. Gen., 31, 6495, 1998 · Zbl 0932.81006 · doi:10.1088/0305-4470/31/30/014
[49] Agarwal, G. S.; Kumar, S. A., Phys. Rev. Lett., 67, 3665, 1991 · doi:10.1103/physrevlett.67.3665
[50] Beus, T.; Van Huele, J. F.; Berrondo, M., Phys. Scr., 96, 075103, 2021 · doi:10.1088/1402-4896/abfa41
[51] Vega, F., J. Math. Phys., 55, 032105, 2014 · Zbl 1286.81120 · doi:10.1063/1.4866914
[52] Tibaduiza, D. M.; Pires, L.; Farina, C., J. Phys. B: At. Mol. Opt. Phys., 54, 205401, 2021 · doi:10.1088/1361-6455/ac36ba
[53] Soto-Eguibar, F.; Asenjo, F. A.; Hojman, S. A.; Moya-Cessa, H. M., J. Math. Phys., 62, 122103, 2021 · Zbl 1486.81121 · doi:10.1063/5.0044144
[54] Fiore, G.; Gouba, L., J. Math. Phys., 52, 103509, 2011 · Zbl 1272.81226 · doi:10.1063/1.3653486
[55] Lewis, H. R. Jr., Phys. Rev. Lett., 18, 636, 1967 · doi:10.1103/physrevlett.18.636.2
[56] Lewis, H. R. Jr., J. Math. Phys., 9, 1976-1986, 1968 · Zbl 0167.52501 · doi:10.1063/1.1664532
[57] Lewis, H. R. Jr.; Riesenfeld, W. B., J. Math. Phys., 10, 1458-1473, 1969 · Zbl 1317.81109 · doi:10.1063/1.1664991
[58] de Ponte, M. A.; Cônsoli, P. M.; Moussa, M. H. Y., Phys. Rev. A, 98, 032102, 2018 · doi:10.1103/physreva.98.032102
[59] Lawson, L.; Gouba, L.; Avossevou, G. Y., J. Phys. A: Math. Theor., 50, 475202, 2017 · Zbl 1379.81051 · doi:10.1088/1751-8121/aa86c4
[60] Patra, P.; Saha, J. P.; Biswas, K., Indian J. Phys., 96, 309-315, 2022 · doi:10.1007/s12648-020-01962-6
[61] Lawson, L. M.; Avossevou, G. Y. H.; Gouba, L., J. Math. Phys., 59, 112101, 2018 · Zbl 1404.35381 · doi:10.1063/1.5045621
[62] Patra, P.; Chowdhury, A.; Jana, M., Eur. Phys. J. Plus, 137, 1021, 2022 · doi:10.1140/epjp/s13360-022-03248-8
[63] Penna, V., Ann. Phys., 245, 389-407, 1996 · Zbl 0881.47050 · doi:10.1006/aphy.1996.0014
[64] Bagrov, V. G.; Gitman, D. M.; Pereira, A. S., Phys.-Usp., 57, 891, 2014 · doi:10.3367/ufne.0184.201409c.0961
[65] Bužek, V.; Lai, W. K.; Knight, P. L., Quantum aspects of optical communications, Lecture Notes in Physics, 378, 1991, Springer: Springer, Berlin, Heidelberg · Zbl 0755.94002
[66] de Oliveira, F. A. M.; Kim, M. S.; Knight, P. L.; Buek, V., Phys. Rev. A, 41, 2645, 1990 · doi:10.1103/physreva.41.2645
[67] Anbaraki, A., Optik, 176, 287-294, 2019 · doi:10.1016/j.ijleo.2018.09.078
[68] Williamson, J., Am. J. Math., 58, 141, 1936 · JFM 63.1290.01 · doi:10.2307/2371062
[69] Nicacio, F., Am. J. Phys., 89, 1139-1151, 2021 · doi:10.1119/10.0005944
[70] Piovella, N.; Cola, M.; Bonifacio, R., Phys. Rev. A, 67, 013817, 2003 · doi:10.1103/physreva.67.013817
[71] Cazalilla, M. A., J. Phys. B: At. Mol. Opt. Phys., 37, S1, 2004 · doi:10.1088/0953-4075/37/7/051
[72] Nokkala, J.; Martínez-Peña, R.; Giorgi, G. L.; Parigi, V.; Soriano, M. C.; Zambrini, R., Commun Phys, 4, 53, 2021 · doi:10.1038/s42005-021-00556-w
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.